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Abstract

The Weighted Connectivity Augmentation Problem is the problem of augmenting the edge-
connectivity of a given graph by adding links of minimum total cost. This work focuses on
connectivity augmentation problems in the Steiner setting, where we are not interested in the
connectivity between all nodes of the graph, but only the connectivity between a specified subset
of terminals.

We consider two related settings. In the Steiner Augmentation of a Graph problem (k-
SAG), we are given a k-edge-connected subgraph H of a graph G. The goal is to augment H
by including links and nodes from G of minimum cost so that the edge-connectivity between
nodes of H increases by 1. This is a generalization of the Weighted Connectivity Augmentation
Problem, in which only links between pairs of nodes in H are available for the augmentation.

In the Steiner Connectivity Augmentation Problem (k-SCAP), we are given a Steiner k-edge-
connected graph connecting terminals R, and we seek to add links of minimum cost to create a
Steiner (k + 1)-edge-connected graph for R. Note that k-SAG is a special case of k-SCAP.

All of the above problems can be approximated to within a factor of 2 using e.g. Jain’s
iterative rounding algorithm [12] for Survivable Network Design. In this work, we leverage the
framework of Traub and Zenklusen [18] to give a (1 + ln 2 + ε)-approximation for the Steiner
Ring Augmentation Problem (SRAP): given a cycle H = (V (H), E) embedded in a larger graph
G = (V,E∪L) and a subset of terminals R ⊆ V (H), choose a subset of links S ⊆ L of minimum
cost so that (V,E ∪ S) has 3 pairwise edge-disjoint paths between every pair of terminals.

We show this yields a polynomial time algorithm with approximation ratio (1 + ln 2+ ε) for
2-SCAP. We obtain an improved approximation guarantee of (1.5 + ε) for SRAP in the case
that R = V (H), which yields a (1.5 + ε)-approximation for k-SAG for any k.



1 Introduction
1.1 Background
The edge-connectivity of a graph is a common measure of the robustness of the network to edge
failures. If a network is k-edge-connected, then it can sustain failures of up to k − 1 edges without
being disconnected. Many problems in the area of network design seek to construct a cheap network
which satisfies edge-connectivity requirements between certain pairs of nodes.

This has given rise to many fundamental problems of interest in combinatorial optimization
and approximation algorithms. One notable example is the Survivable Network Design Problem
(SNDP). In SNDP, we are given a graph with non-negative costs on edges and a connectivity
requirement rij for each pair of vertices i, j ∈ V . The goal is to find a cheapest subgraph of G so
that there are rij pairwise edge-disjoint paths between all pairs of vertices i and j.

Jain [12] gave a polynomial time algorithm for SNDP based on iterative rounding, which achieves
an approximation factor of 2. Despite its generality, this algorithm achieves the best-known ap-
proximation ratio for a variety of network design problems of particular interest. For example,
when rij = k for all i, j ∈ V , we obtain the weighted minimum cost k-edge-connected spanning
subgraph problem, for which no better-than-2 approximation algorithm is known, even when k = 2.
However, for some special cases, such as the minimum Steiner tree problem, specialized algorithms
have been developed to improve upon this ratio. Hence, a major question in the field of network
design is: for which network connectivity problems can we achieve an approximation factor below
2?

Recently, there has been major progress towards addressing this question. Consider the special
case of SNDP known as the Weighted Connectivity Augmentation Problem (WCAP), in which
we seek to augment the edge-connectivity of a given graph by inserting a collection of links of
minimum cost. Formally, we are given a graph G = (V,E) and a k-edge connected spanning
subgraph H = (V,E(H)). The edges in L := E \ E(H) are called links and have non-negative
costs. The goal is to choose a subset of links S ⊆ L of minimum cost such that (V,E ∪ S) is a
(k + 1)-edge-connected graph.

A solution to WCAP must include a link crossing each of the min-cuts of the given graph
H. Since the minimum cuts of any graph can be represented by a cactus [8], it is enough to
consider the WCAP problem for k = 2 and when H is a cactus1. This is called the Weighted
Cactus Augmentation Problem. In fact, for the purposes of approximation, the Weighted Cactus
Augmentation Problem reduces further to the case where H is a cycle (the so-called Weighted Ring
Augmentation Problem WRAP) [10]. If k is odd, WCAP reduces to the case where k = 1 and H
is a tree, yielding the Weighted Tree Augmentation Problem (WTAP).

In a breakthrough result, Traub and Zenklusen [19] employed a relative greedy algorithm based
on the work of [4] to give the first approximation algorithm with approximation ratio better than 2
for WTAP. In particular, they achieved an approximation ratio of (1+ ln 2+ ε) for WTAP, thereby
yielding the same result for WCAP when k is odd. Shortly afterward, they improved upon this
result, bringing the approximation factor down to (1.5 + ε) for WTAP [20] using a local search
algorithm.

After this breakthrough for WTAP, Traub and Zenklusen turned to the general case of the
Weighted Connectivity Augmentation Problem. In [18], they adapt the same local search method

1A cactus is a graph in which every edge is included in exactly 1 cycle.
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that was used for WTAP to give a (1.5 + ε)-approximation algorithm for Weighted Ring Augmen-
tation Problem. As discussed above, this gives a (1.5 + ε)-approximation for general WCAP.

It is important to note that for the above problems, the parameter of interest is the global edge-
connectivity of the graph. However, in many applications, we are not interested in connectivity
between all nodes in the graph, but rather only the connectivity between a specified subset of
“important” nodes called terminals.

In this paper, we develop algorithms for generalizations of WCAP to this Steiner setting. The
most natural problem of interest is the problem of augmenting a k-edge-connected Steiner subgraph
into a (k + 1)-edge-connected Steiner subgraph in the cheapest possible way. We call this problem
k-SCAP:

Problem 1.1 (k-Steiner Connectivity Augmentation Problem). We are given a graph G = (V,E ∪
L) and a subset of terminals R ⊆ V such that H := (V,E) has k edge-disjoint paths between every
pair of vertices in R. We are also given a cost function c : L→ R≥0.

The goal is to select S ⊆ L of cheapest cost so that the graph (V,E ∪ S) has k + 1 pairwise
edge-disjoint paths between all pairs of nodes in R.

In [17], the authors achieve a (1.5 + ε)-approximation for the problem of cheaply augmenting
a given Steiner tree to be a 2-edge-connected Steiner subgraph. This is called the Steiner Tree
Augmentation Problem, and is equivalent to 1-SCAP. However, until now, there were no known
results in this vein for higher-connectivity augmentation in the Steiner setting.

There is another, simpler problem which is a Steiner generalization of WCAP. In the standard
WCAP problem, we can only add links between pairs of vertices in the given graph. What if we
are allowed to use links which join nodes outside the graph to be augmented? This is the Steiner
Augmentation of a Graph problem (k-SAG).

Problem 1.2 (Steiner Augmentation of a Graph). We are given a k-edge-connected graph H =
(R,E), which is a subgraph of G = (V,E ∪̇ L). The links L have non-negative costs c : L→ R≥0.

The goal is to select S ⊆ L of cheapest cost so that the graph H ′ = (V,E ∪S) has k+1 pairwise
edge-disjoint paths between u and v for all u, v ∈ R.

Notice that k-SAG is a special case of k-SCAP.

Figure 1: A 3-SAG instance is shown on the left, and a 3-SCAP instance is shown on the right.
The shaded nodes are terminals R, the black edges denote the edges of E and the dashed edges
represent the links L. In both pictures, the blue dashed links form a feasible solution.
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1.2 Our results
In this paper, we give the first approximation algorithm with approximation ratio better than 2 for
2-SCAP, and for k-SAG for any k. To do this we introduce and solve the Steiner Ring Augmentation
Problem (SRAP).

Problem 1.3 (Steiner Ring Augmentation Problem). We are given a cycle H = (V (H), E), which
is a subgraph of G = (V,E ∪̇ L). The links L have non-negative costs c : L→ R≥0. Furthermore,
we are given a set of terminals R ⊆ V (H).

The goal is to select S ⊆ L of minimum cost so that the graph H ′ = (V,E ∪ S) has 3 pairwise
edge-disjoint paths between u and v for all u, v ∈ R.

Figure 2: A SRAP instance where the black edges denote the given cycle, the dashed edges are the
links, and the blue links form a feasible solution. The shaded nodes are the terminals R.

In terms of approximability, the Steiner Ring Augmentation Problem captures both WCAP and
STAP as special cases, in the sense that an α-approximation for SRAP implies the same guarantee
for both WCAP and STAP. We show that it also implies improved approximation algorithms for
2-SRAP and k-SAG.

Lemma 1.4. If there is an α-approximation for SRAP, then there is an α-approximation for 2-
SCAP. If there is an α-approximation for SRAP when R = V (H), then there is an α-approximation
for k-SAG.

Our main theorem is an improved approximation algorithm for SRAP.

Theorem 1.5. There is a (1 + ln 2 + ε)-approximation algorithm for SRAP.

The ultimate goal of this line of work would be to achieve a better-than-2 approximation
algorithm for k-SCAP for general k. Our result on SRAP implies an improved approximation
for this problem when k = 2.

Corollary 1.6. There is a (1 + ln 2 + ε)-approximation algorithm for the 2-Steiner Connectivity
Augmentation Problem.

The challenge of obtaining a result for k-SCAP when k ≥ 3 is that the cuts to be covered are
no longer necessarily minimum cuts in the given graph. Thus, there is no way to represent these in
a cactus or ring structure, and new techniques would have to be developed to deal with this case.

However, in the case of k-SAG, we can replace H with a cactus, and subsequently a ring without
changing the structure of its minimum cuts. Hence, the k-SAG problem ultimately reduces to the
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special case of SRAP where all cycles nodes are terminals. In this case, we can employ the local
search methodology introduced by Traub and Zenklusen [20] to achieve an improved approximation
ratio of (1.5 + ε).

Theorem 1.7. There is a (1.5 + ε)-approximation algorithm for SRAP when R = V (H). Hence
there is a (1.5 + ε)-approximation algorithm for the Steiner Augmentation of a Graph problem.

1.3 Related Work
There is a broad body of work on algorithms for network connectivity, for various notions of
connectivity, and in both the weighted and unweighted settings. See [11] and [14] for two excellent
surveys.

We focus on edge-connectivity. Jain’s iterative rounding algorithm achieves an approximation
ratio of 2 for the general survivable network design problem [12] in the weighted setting. As
discussed above, this implies a 2-approximation for minimum cost k-edge-connected spanning sub-
graph (min k-ECSS) by taking rij = k for all pairs of nodes. This is the best currently known
approximation ratio for this problem, and can be achieved through a variety of classical methods
such as the Primal Dual method, see [21].

The Weighted Connectivity Augmentation Problem (WCAP) is a special case of min k-ECSS
where there is a 0 cost (k − 1)-edge-connected subgraph. In the case of augmenting a k-edge-
connnected graph where k is odd, WCAP reduces to the extensively studied Weighted Tree Aug-
mentation Problem (WTAP). Even WTAP is known to be APX-hard and is NP-hard on various
special cases such as when the given tree has diameter four [9][13].

The current best approximation ratio for WTAP is (1.5 + ε) due to Traub and Zenklusen
in [20]. Their approach was inspired by the work of Cohen and Nutov [4] who gave a (1 + ln 2)-
approximation for WTAP when the given tree has constant diameter. Improved ratios can be
obtained in the unweighted case: the state of the art being a 1.393 approximation due to [2], which
also holds for unweighted Connectivity Augmentation.

It is known that the natural linear programming relaxation for WTAP has integrality gap
at most 2 and at least 1.5 [3]. Stronger formulations have been considered for WTAP: Fiorini
et. al. introduced the ODD-LP [8] which can be optimized over in polynomial time, despite having
exponentially many constraints. The ODD-LP has integrality gap at most 2− 1

2h−1 for WTAP on
instances where the given tree can be rooted to have height h [16].

In the case that k is even, WCAP reduces in an approximation preserving way to the Weighted
Cactus Augmentation Problem. Traub and Zenklusen broke the barrier of 2 for this problem and
gave a (1.5 + ε)-approximation algorithm, matching the approximation ratio for WTAP [18].

Nutov [15] considered the node-weighted version of SNDP and provided aO(k log n)-approximation
for this problem, where k is maximum connectivity requirement. This impliesO(log n)-approximations
for the node-weighted versions of all the problems considered in this paper.

1.4 Preliminaries
Suppose G = (V,E) is a graph with vertex set V and edge set E. For a non-empty subset of vertices
C ⊊ V , the cut δ(C) consists of all edges in E with one endpoint in C. For a subset X ⊆ E, we
denote by δX(C) := δ(C) ∩X. A cut C is a k-cut if |δ(C)| = k.

The edge-connectivity λ(u, v) between a pair of vertices u, v ∈ V is the maximum number of
edge-disjoint paths between u and v inG. Equivalently, λ(u, v) = λ(v, u) is the minimum cardinality
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of a cut δ(C) with u ∈ C and v ̸∈ C. A graph is said to be k-edge-connected if λ(u, v) ≥ k for all
pairs u, v ∈ V . Given a subset of terminals R ⊆ V , we say that G is Steiner k-edge-connected on
R if λ(u, v) ≥ k for all pairs of terminals u, v ∈ R.

Given a Steiner k-edge-connected graph G = (V,E) on terminals R, let r ∈ R, and define

C′′ = {C ⊆ V \ r : |δ(C)| = k, C ∩R ̸= ∅}

to be the family of k-cuts of G which separate some terminal from r. We call the cuts in C
dangerous cuts.

The family of dangerous cuts has nice structural properties. In particular, it is uncrossable,
that is, if A and B are members of C with A∩B ̸= ∅ and neither contained in the other, then either

• A ∩B and A ∪B are members of C, or

• A \B and B \A are members of C.

The k-SCAP problem is a hitting set problem where the ground set is the collection links L,
and the sets are δ(C) where C ∈ C′′. That is, a set of links which is a solution to this hitting set
problem will cause the graph to become Steiner (k + 1)-edge-connected. The link ℓ “covers” the
dangerous cuts C with ℓ ∈ δ(C).

We now recall the SRAP problem.

Problem 1.3 (Steiner Ring Augmentation Problem). We are given a cycle H = (V (H), E), which
is a subgraph of G = (V,E ∪̇ L). The links L have non-negative costs c : L→ R≥0. Furthermore,
we are given a set of terminals R ⊆ V (H).

The goal is to select S ⊆ L of minimum cost so that the graph H ′ = (V,E ∪ S) has 3 pairwise
edge-disjoint paths between u and v for all u, v ∈ R.

We refer to the nodes in R as terminals, and the nodes in V \ R as Steiner nodes. We will
also refer to H as the ring to distinguish it from a generic cycle. It will be convenient to fix a root
r ∈ R of the ring and an edge er ∈ E incident on r.

We now introduce some terminology which allows us to be phrase the SRAP problem as a
covering problem on a collection of ring-cuts only. Indeed, given the ring H = (V (H), E), denote
the set of min-cuts of H as:

C′ = {C ⊆ V (H) \ r : |δE(C)| = 2}.

Since we are only interested in connectivity between the terminals, we only need to cover the
subfamily of C′ which separates terminals.

Let
C = {C ⊆ V (H) \ r : |δE(C)| = 2, C ∩R ̸= ∅}.

We call the cuts in C dangerous ring-cuts. It is easy to see that this family is also uncrossable.
Consider any solution S to SRAP where S ⊆ L.

Definition 1.8. A full component of a SRAP solution S, is a maximal subtree of the solution
where each leaf is a ring node (that is, a vertex of V (H)), and each internal node is in V \ V (H).

Any link-minimal SRAP solution can be uniquely decomposed into link-disjoint full components.
We say that a full component “joins” the ring nodes that it contains.
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Definition 1.9. Let S be a solution to SRAP. We say that a set A ⊆ R is joined by S if there is
a full component with leaves A.

In fact, the feasibility of a solution is determined only by the sets of nodes that it joins.

Definition 1.10. We say that a cut C ∈ C is covered by a solution S if A∩C ̸= ∅ and Ā∩C ̸= ∅
for some subset of ring nodes A which are joined by a full component of S.

Lemma 1.11. A solution S is feasible for SRAP iff all dangerous ring-cuts are covered by S.

Proof. Suppose that each dangerous ring-cut of H = (V (H), E) is covered. That is, for each C ∈ C,
there is a full component of S joining vertices A ⊆ V (H) such that A ∩ C ̸= ∅ and Ā ∩ C ̸= ∅.
We will show that any cut C ′ ⊆ V which separates a pair of terminals has δE∪S(C

′) ≥ 3, thereby
implying the existence of 3 pairwise edge-disjoint paths between all terminal pairs.

Consider the cut C ′∩V (H) obtained by restricting C ′ to V (H). We may assume that C ′∩V (H)
is a 2-cut, otherwise δE(C ′) ≥ 3 already. Furthermore, note that C ′∩R ̸= ∅. Hence, C ′∩V (H) is a
dangerous ring-cut, and there is some full component of S covering it. This implies that δS(C ′) ≥ 1
so δE∪S(C

′) ≥ 3 as desired.
For the reverse direction, suppose that S is a feasible solution to SRAP. Consider any dangerous

ring-cut C ∈ C. We will show that there must be a path in S from a node in C to another ring
node which is not contained in C, implying that there is some full component covering C. Since
δE∪S(C) ≥ 3, there must be a link (u, v) ∈ S with u ∈ C and v ̸∈ C. If v is a ring node, we are
done. Otherwise, the cut C ′ = C ∪ v is another dangerous cut which is covered by S. Repeating
this process eventually yields a path of links from a node in C to a ring node outside C, hence the
full component of S containing this path covers C.

1.5 Hyper-SRAP and the hyper-link intersection graph
We next introduce the Hyper-SRAP problem. We are given a ring H = (V (H), E) with terminals
R ⊆ V (H), a root vertex r ∈ R, and a collection of hyper-links L ⊆ 2V (H) with non-negative costs
c : L → R≥0.

Again, let C = {C ⊆ V (H) : |δE(C)| = 2, r ̸∈ C,C ∩ R ̸= ∅} be the set of dangerous ring-cuts,
i.e. the set of min-cuts of the ring H which separate some terminal from r. Let ℓ be a hyper-link.
We say that a cut C ∈ C is covered by ℓ if ℓ∩C ̸= ∅ and ℓ∩ C̄ ̸= ∅. A subset of hyper-links F ⊆ L
is feasible if all cuts in C are covered. The Hyper-SRAP problem is to find a minimum cost subset
of hyper-links so that all cuts in C are covered.

We will use the notion of the hyper-link intersection graph, an auxiliary graph which gives
a useful characterization of feasibility for Hyper-SRAP. First, we define what it means for two
hyper-links to be intersecting.

Definition 1.12. A pair of hyper-links ℓ1 and ℓ2 are intersecting if they share a vertex, or there
is a vertex in ℓ between two vertices in ℓ′ and a vertex of ℓ′ in between two vertices of ℓ.

Given an instance of Hyper-SRAP with ring H = (V (H), E) and hyper-links L, we define the
hyper-link intersection graph Γ as follows. For each hyper-link ℓ ∈ L there is a node vℓ. Two nodes
vℓ1 and vℓ2 are adjacent in the hyper-link intersection graph if and only if ℓ1 and ℓ2 are intersecting
hyper-links.

For ring vertices u, v ∈ V (H), we say that there is a path from u to v in Γ if there is a path
in Γ from a hyper-link containing u to a hyper-link containing v. It turns out that a solution S
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to Hyper-SRAP is feasible if and only if there is a path between every pair of terminals in the
hyper-link intersection graph when restricted to S. The following lemma is proved in section 6.
Lemma 1.13. Suppose (H,L, R) is an instance of Hyper-SRAP with root r and intersection graph
Γ. Then S ⊆ L is feasible iff for each terminal r′ ∈ R, there is a path between r and r′ in the
hyper-link intersection graph restricted to S.

1.6 Effects of γ-restriction
Definition 1.14. We say that a full component is γ-restricted if it joins at most γ ring nodes. We
say that a solution to SRAP is γ-restricted if it uses only γ-restricted full components. Analogously,
we say an instance of Hyper-SRAP is γ-restricted if each hyper-link has size at most γ.

We show that up to a factor of (1+ ε), it suffices to find the best γ-restricted solution to SRAP
for some constant γ(ε). First, we recall the following result for Steiner trees. Given a Steiner tree
solution T , a full component of is a subtree of T whose leaves are terminals and whose non-leaves
are non-terminals. A γ-restricted Steiner tree solution is a solution whose full components all have
at most γ terminals.
Lemma 1.15 (Borchers and Du [1]). Let ε > 0. Fix an instance of Steiner tree and let T ∗ be the
optimal Steiner Tree and Tγ be the optimal γ-restricted Steiner tree. Then for γ = 2⌈

1
ε
⌉, we have

c(Tγ)

c(T ∗)
≤ 1 + ε.

Now, we prove an analogous result for SRAP. For an instance of SRAP, let S∗ be the optimal
solution and Sγ be the optimal γ-restricted solution.

Lemma 1.16. For all ε > 0, there exists γ(ε) = 2⌈
1
ε
⌉ such that

c(Sγ)

c(S∗)
≤ 1 + ε.

Proof. By the optimality of S∗, each full component of S∗ is minimum cost Steiner tree on the ring
nodes A that it joins, in the graph (A ∪ (V \ V (H)), L). By Lemma 1.15, there is a γ-restricted
Steiner Tree with at most (1 + ε) times the cost. Applying this to each full component of S∗

yields a solution of cost at most (1+ ε)c(S∗) which only has full components joining at most γ ring
nodes.

We recall that the minimum cost Steiner tree problem can be solved in polynomial time when
the number of terminals is constant.
Theorem 1.17 (Dreyfus and Wagner [7]). The minimum Steiner tree problem can be solved in
time O(n3 · 3p) where p is the number of terminals.

Because Lemma 1.11 shows that the feasibility of a solution only depends on the nodes that are
joined by full components of S, we can effectively disregard the Steiner nodes outside the ring and
observe that any instance of SRAP is equivalent instance of Hyper-SRAP in which the cost of a
hyper-link A is the minimum cost Steiner tree connecting A in the graph (A ∪ (V \ V (H)), L). By
Lemma 1.16, and Theorem 1.17, we can perform this reduction from an arbitrary SRAP instance
to an instance of γ-restricted Hyper-SRAP in polynomial time while only losing a factor of (1 + ε)
in the approximation ratio.
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1.7 Directed solutions
Finally, we will make use of directed solutions to the SRAP problem. If F⃗ is a collection of directed
links between pairs of vertices of the ring, then a dangerous ring-cut C ∈ C is covered by F⃗ if
δ−
F⃗
(C) ̸= ∅, i.e. if there is an arc in F⃗ which enters C. Then F⃗ is a feasible directed solution if

all dangerous ring-cuts are covered by F⃗ . Analogously, if S is a set of undirected links and F⃗ is a
set of directed links then we will say that S ∪ F⃗ is a feasible mixed solution if every dangerous
ring-cut is covered by S or by F⃗ .

2 Technical Overview
The main contribution of this article is to prove Theorem 1.5.

Theorem 1.5. There is a (1 + ln 2 + ε)-approximation algorithm for SRAP.

We begin by illustrating in section 3, how this implies improved approximation guarantees for
both 2-SCAP and k-SAG. Recall that in the k-SCAP problem, we are given a graph H which
is Steiner k-edge-connected on the terminal set R. We want to augment this graph by including
additional links of minimum cost so that there exists k + 1 pairwise edge-disjoint paths between
every pair of terminals. This is equivalent to covering the dangerous cuts of H with a minimum
cost set of links.

Note that if k is larger than the global edge-connectivity of H, then there may be exponentially
many dangerous cuts. Indeed even when R = {s, t}, the number of minimum {s, t}-cuts in a graph
G on n nodes may be exponential in n. This shows that for general k-SCAP, the set of cuts to
be covered cannot be represented by a cactus structure which is efficiently computable (although
it is true that there are polynomially many dangerous cuts up to containing the same subset of
terminals [6], this is not sufficient for our purposes).

However, in the case of k = 2, we show in section section 3 that we may take H to be a globally
2-edge-connected graph rather than merely Steiner 2-edge-connected. This allows us to compactly
represent the cuts to be covered by a cactus on a set of nodes, some of which are terminals. We
then use the technique introduced by Gálvez et. al. [10] to replace the cactus with a ring by adding
in links of 0 cost. This bring the problem into the SRAP framework. In the case of k-SAG, we are
guaranteed that H is k-edge-connected so we can directly replace H with a cactus with the same
cut structure. This yields:

Lemma 1.4. If there is an α-approximation for SRAP, then there is an α-approximation for 2-
SCAP. If there is an α-approximation for SRAP when R = V (H), then there is an α-approximation
for k-SAG.

In order to prove Theorem 1.5, we give a relative greedy algorithms which follows the method-
ology developed in [18] for the Weighted Ring Augmentation Problem. We first summarize this
method and then illustrate the challenges that arise in the Steiner setting, and how we deal with
them.

First we provide an overview of the algorithm which achieves an approximation ratio of (1+ln 2+
ε) for WRAP. The algorithm is a relative greedy algorithm which begins by computing an initial
directed solution which is highly structured, then iteratively improves upon this solution through
local moves. In each local move, a collection of links is added to the solution, and a collection of
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directed links are dropped from the initial solution. The algorithm repeats this process until the
initial solution becomes empty.

For the initial structured solution, Traub and Zenklusen show that it is possible to compute
in polynomial time an initial 2-approximate directed solution to WRAP which is a planar r-out
arborescence F⃗ reaching all other vertices in the ring. This arborescence structure gives a condition
for when a directed link (u, v) is allowed to be dropped from this solution such that a) feasibility
of the mixed solution is maintained throughout the algorithm, and b) in each iteration of the
algorithm, progress is made in terms of reducing the overall cost.

Our relative greedy algorithm for SRAP follows this framework. However, there are several key
ingredients which are needed to obtain the result in the Steiner setting.

First, we need an initial structured 2-approximate solution to SRAP. Note that in the SRAP
problem, unlike in the standard Ring Augmentation Problem, the optimal solution may use links
between Steiner nodes outside the ring in order to increase the connectivity between pairs of
terminals in the ring. In section 4, we prove Theorem 2.1, which shows that there is always a
directed 2-approximate solution which only consists of directed links in the ring, is only incident
on terminals, and which can be found in polynomial time. In particular we show:

Theorem 2.1. There is a polynomial time algorithm for SRAP which yields a directed solution F⃗
of cost at most 2OPT such that:

1. F⃗ is only incident on the terminals R

2. (R, F⃗ ) is an r-out arborescence.

3. (R, F⃗ ) is planar when V (H) is embedded as a circle in the plane.

4. For any v ∈ V , no two directed links in δ+
F⃗
(v) go in the same direction along the ring.

We call a directed solution which satisfies the conditions in Theorem 2.1 an R-special di-
rected solution. The proof of Theorem 2.1 is significantly more involved than the the directed
2-approximation for standard WRAP. At a high level, we first demonstrate that there is a 2-
approximate directed solution consisting of a collection of directed cycles on the ring nodes. Then,
we prove a “cycle merging lemma” which allows us to iteratively merge these cycles to eventually
obtain a feasible directed solution which is a single directed cycle of at most the cost. Once we
have a solution of this form, we can shortcut over the Steiner nodes in the ring to obtain a directed
cycle solution which only touches terminals, which can then be shortened to satisfy the properties
in Theorem 2.1.

An R-special directed solution of this form is necessary because it allows us to leverage a decom-
position result on directed solutions with respect to the optimum. Because of the decomposition
result, it can be argued that every iteration of the algorithm will find an improving local move as
long as the current solution is expensive.

Traub and Zenklusen prove a decomposition result of this kind to achieve the approximation
algorithm for WRAP [18]. However, in our setting, the optimal solution consists of full components
which may join an arbitrary number of vertices in the ring, rather than just links which join pairs
of ring vertices. Hence, we prove Theorem 2.3, extending the decomposition result in [18] to hyper-
links. First we need to define the notion of an α-thin collection of hyper-links. Recall that C′ is the
set of minimum cuts of the ring H which do not include the root.
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Definition 2.2. A collection of hyper-links K ⊆ L is α-thin if there exists a maximal laminar
subfamily D of C′ such that for each C ∈ D, the number of hyper-links in K which cover C is at
most α.

In the following theorem, for a collection of hyper-links K and an R-special directed solution
F⃗0, the notation dropF⃗0

(K) denotes a set of directed links from F⃗0 which can be dropped while
preserving feasibility of F⃗0 ∪K. This will be defined formally in section 6.

Theorem 2.3 (Decomposition Theorem). Given an instance of Hyper-SRAP (H = (V (H), E), R,L),
suppose F⃗0 is an R-special directed solution and S ⊆ L is any solution. Then for any ε > 0, there
exists a partition Z of S into parts so that:

• For each Z ∈ Z, Z is α-thin for α = 4⌈1/ε⌉.

• There exists Q ⊆ F⃗0 with c(Q) ≤ ε · c(F⃗0), such that for all f ∈ F⃗0 \Q, there is some Z ∈ Z
with f ∈ dropF⃗0

(Z). That is, F⃗0 \Q ⊆
⋃

Z∈Z dropF⃗0
(Z).

We remark that the above decomposition theorem does not hold if F⃗0 is a directed arborescence
which is incident on Steiner nodes. This is why Theorem 2.1 establishing the existence of an
R-special directed solution only touching terminals is crucial for the relative greedy algorithm to
obtain the desired approximation guarantee.

In order to reduce a given instance of SRAP to an instance of Hyper-SRAP we also make use
of Lemma 1.16, which allows us to only consider full components joining constantly many ring
vertices, while only losing an arbitrarily small constant in the approximation ratio.

This allows us to convert a given instance of SRAP into an equivalent Hyper-SRAP instance
efficiently. It also ensures that each local move of the algorithm runs in polynomial time. In each
local move, the algorithm chooses amongst all α-thin collections of hyper-links K, the choice which
minimizes the ratio between the cost of the hyper-links in K, and the cost of the directed links
which will be dropped as a result of adding K to the solution. In section 8, we show that this
operation can be performed in polynomial time as long as all hyper-links have size at most γ.

Theorem 2.4. Given an instance of γ-restricted Hyper-SRAP, an R-special directed solution F⃗0

and an integer α ≥ 1, there is a polynomial time algorithm which finds a collection of hyper-links
K minimizing

c(K)

c(dropF⃗0
(K))

over all α-thin subsets of hyper-links.

Theorems 2.1, 2.3, and 2.4 together are essentially enough to employ a relative greedy strategy
to obtain a better-than-2 approximation for SRAP. Beginning with an R-special 2-approximate
directed solution, we iteratively add to this solution a greedily chosen α-thin collection of hyper-
links in each step. When a particular collection of hyper-links K is chosen to be added, the directed
links in dropF⃗0

(K) are dropped from F⃗0, and this process is repeated until F⃗0 becomes empty. The
relative greedy algorithm and its proof are described in section 5.

Additionally, in the case that all ring nodes are terminals, we can use the local search framework
introduced in [20] to give an algorithm with an improved approximation guarantee of (1.5 + ε).
Together with Lemma 1.4, this yields:
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Theorem 1.7. There is a (1.5 + ε)-approximation algorithm for SRAP when R = V (H). Hence
there is a (1.5 + ε)-approximation algorithm for the Steiner Augmentation of a Graph problem.

The key idea in the improvement is to not only consider dropping links from the initial directed
solution, but to drop undirected links which were added in previous iterations by associating to
each undirected link a witness set of directed links which indicate when it can be dropped. This is
proved in section 9.

We are able to do this in the case that V (H) = R because in this case, any feasible directed
solution can be transformed into an R-special solution of at most the cost. However, this is not the
case for general SRAP (also discussed in section 9).

This illustrates why it may be surprising that Theorem 2.1, our key technical contribution,
holds. While it is not true that any feasible directed solution can be made R-special, the proof of
Theorem 2.1 shows that a directed solution which consists of a collection of directed cycles on the
ring can be made R-special, and this is enough to prove the desired guarantees with respect to the
optimum.

3 Reductions to SRAP
In this section, we prove Lemma 1.4.

Lemma 1.4. If there is an α-approximation for SRAP, then there is an α-approximation for 2-
SCAP. If there is an α-approximation for SRAP when R = V (H), then there is an α-approximation
for k-SAG.

Consider an instance of the 2-SCAP problem, where we are given a graph H which is Steiner
2-edge-connected for a set of terminals R, and recall that C′′ = {C ⊆ V \ r : |δ(C)| = 2, C ∩R ̸= ∅}
is the set of dangerous cuts to be covered.

We will show that the connected component of H which contains R can be assumed to be
genuinely 2-edge-connected, rather than merely Steiner 2-edge-connected.

Lemma 3.1. We may assume without loss of generality that the connected components of H consist
only of isolated Steiner nodes, and a single 2-edge-connected loopless component H ′ containing all
of the terminals R.

Proof. First, since H contains a path between every pair of terminals, there must be a single
connected component containing R, call it H ′. So all other connected components contain only
Steiner nodes.

Now consider a connected component K of Steiner nodes. Observe that any dangerous cut C of
size |δE(C)| = 2 separating terminals must either contain K, or be disjoint from K. Otherwise, the
cut C ∪K is still dangerous, but |δE(C ∪K)| < 2, contradicting the Steiner 2-edge-connectivity of
H. Hence, K may be contracted into a single isolated Steiner node.

Now, if H ′ contains any cut K of size |δE(K)| = 1, it cannot separate terminals, so assume
K ∩ R = ∅. Denote the edge crossing this cut as δE(K) = {(u, v)} with u ∈ K, v ̸∈ K. Similarly
to above, we observe that any dangerous cut C containing v must contain K. Otherwise, the cut
C ∪K is still dangerous, but |δE(C ∪K)| < 2. So, again, we may contract K ∪ v without changing
the structure of cuts to be covered.
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Such a contraction removes at least one cut of size 1, so we may repeat this iteratively until no
cuts of size 1 remain. This leaves us with H ′ being a 2-edge-connected graph (and observe that
neither of the contraction operations we performed could have introduced a loop).

With the above lemma, it is easy to see that any dangerous cut C of H is obtained by taking
a dangerous cut of H ′ (that is, a 2-cut C ⊆ V (H ′) which separates terminals), and adding in some
Steiner nodes in V \V (H ′). At a high level, this allows us to replace H ′ with a different graph with
the same cut structure without meaningfully changing the problem.

We can now apply an easy extension of a theorem of Dinits, Karzanov, and Lomonosov on the
cactus representation of the min-cuts of a graph.

Theorem 3.2 (Cactus representation of min-cuts, [5]). Let G = (V,E) be a loopless graph. There
is a cactus Ĝ = (U,F ) and a map ϕ : V → U such that for every 2-cut of Ĝ with shores U1 and
U \ U1, the preimages ϕ−1(U1) and ϕ−1(U \ U1) are the two shores of a min-cut in G. Moreover,
every min-cut of G arises in this way.

The following strengthening of Theorem 3.2 immediately follows by letting u ∈ U be in R′ if
and only if ϕ−1(u) contains a node of R.

Corollary 3.3. Let G = (V,E) be a loopless graph with terminals R ⊆ V . There is a cactus
Ĝ = (U,F ), a set R′ ⊆ U , and a map ϕ : V → U such that for every 2-cut of Ĝ separating nodes
of R′, with shores U1 and U \ U1, the preimages ϕ−1(U1) and ϕ−1(U \ U1) are the two shores of a
min-cut in G which separates terminals. Also, every min-cut in G separating terminals arises in
this way.

Applying Corollary 3.3 to H ′, we may replace H ′ by a cactus Ĥ ′ such that there is a corre-
spondence between 2-cuts which separate terminals in H ′ and 2-cuts in which separate nodes of R′

in Ĥ ′. All links in G incident to a node v of H ′ will now be incident to the corresponding node
ϕ(v) in Ĥ ′. Thus, there is a correspondence between feasible solutions to 2-SCAP and the problem
of 2-SCAP where the connected component of H containing R is a cactus. In particular, we have
shown that 2-SCAP reduces to the following problem:

Problem 3.4 (Steiner Augmentation of a Cactus). We are given a cactus H = (V (H), E), which
is a subgraph of G = (V,E∪̇L). The links L have non-negative costs c : L→ R≥0. There is also a
set of terminals R ⊆ V (H).

The goal is to select S ⊆ L of cheapest cost so that the graph H ′ = (V,E ∪ S) has 3 pairwise
edge-disjoint paths between u and v for all u, v ∈ R.

By the addition of zero-cost links (c.f Theorem 4 in [10]), we can unfold the cactus further so
that H is a cycle. This is precisely the Steiner Ring Augmentation Problem, which we restate here:

Problem 1.3 (Steiner Ring Augmentation Problem). We are given a cycle H = (V (H), E), which
is a subgraph of G = (V,E ∪̇ L). The links L have non-negative costs c : L→ R≥0. Furthermore,
we are given a set of terminals R ⊆ V (H).

The goal is to select S ⊆ L of minimum cost so that the graph H ′ = (V,E ∪ S) has 3 pairwise
edge-disjoint paths between u and v for all u, v ∈ R.

Each of these reductions can be performed in polynomial time. And, since the structure of
dangerous cuts to be covered remains the same, any solution to the 2-SCAP instance gives rise a
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solution of the same cost in the SRAP instance, and every solution in the SRAP instance arises in
such a way. This proves the first half of Lemma 1.4.

The second half of Lemma 1.4, the reduction from k-SAG, follows in an almost identical (albeit
simpler) fashion. We replace the k-edge-connected graph H with a cactus Ĥ using Theorem 3.2,
such that there is a correspondence between the min-cuts of H and the 2-cuts of Ĥ. This time, all
nodes in Ĥ are terminals. We can again add zero cost links to replace Ĥ with a cycle, yielding an
instance of SRAP in which R = V (H).

4 A structured 2-approximate solution for SRAP
SRAP can be approximated to within a factor of 2 using Jain’s algorithm for Survivable Network
Design [12]. Recall that for a rooted SRAP instance on ring H, the set of cuts to be covered is

C = {C ⊆ V (H) \ r : |δE(C)| = 2, C ∩R ̸= ∅}.

Also recall that a subset of directed links F⃗ is feasible if δ−
F⃗
(C) ≥ 1 for all C ∈ C. In other words,

a directed link covers only those cuts in C that it enters. In this section, we show that we can find
a 2-approximate directed-link solution to SRAP which is only incident on terminals, and is highly
structured.

Theorem 2.1. There is a polynomial time algorithm for SRAP which yields a directed solution F⃗
of cost at most 2OPT such that:

1. F⃗ is only incident on the terminals R

2. (R, F⃗ ) is an r-out arborescence.

3. (R, F⃗ ) is planar when V (H) is embedded as a circle in the plane.

4. For any v ∈ V , no two directed links in δ+
F⃗
(v) go in the same direction along the ring.

We call a directed solution which satisfies the above conditions an R-special directed solution.

4.1 Complete instances
In order to prove Theorem 2.1, we need to perform several preprocessing steps on our instance to
ensure that the necessary links are available. This will result in an equivalent “completed” instance
which can be efficiently computed.

To bring our instance into the desired form, we will perform three preprocessing steps: metric
completion, shadow completion, and then a second metric completion on the resulting directed
links.

For the first metric completion, we place a new undirected link between each pair of vertices
of the ring u, v ∈ V (H), with cost equal to the shortest path from u to v which uses only links (if
there is no link-path from u to v the cost is infinity). This does not affect the cost of the optimal
solution, so we may assume without loss of generality that the instance is metric complete. After
this step, there is an undirected link between every pair of vertices in the ring.

For shadow completion, for each link ℓ = (u, v) with u, v ∈ V (H), we will add to the instance a
collection of directed links known as the shadows of ℓ. These will all have the same cost as ℓ. The
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shadows of ℓ consist of the two directed links (u, v) and (v, u) as well as all shortenings of these
two directed links. If (u, v) is a directed link, then (s, t) is a shortening of (u, v) if v = t and s is
a vertex on the path from u to v in E \ er.

With this definition, it is not hard to see that a shadow of ℓ covers a subset of the cuts in C
that ℓ covers. Hence, we may perform this step without affecting the cost of the optimal solution.

Finally, we do a second round of metric completion on the newly added directed links, similar
to the first. For every pair of vertices u, v ∈ V (H), if there is a directed path from u to v, we add
a directed link (u, v) with cost equal to the cost of the shortest such path.

After these operations, we are left with an instance of SRAP such that any solution to this
instance can be converted into a solution to the original SRAP instance with the same cost. Hence,
we may assume that these operations have been performed on the given SRAP instance without
loss of generality. See Figure 3 for an example of this preprocessing.

Furthermore, we claim that any further iterations of these two preprocessing operations (metric
completion and shadow completion) will not change the instance.

Definition 4.1. An instance of SRAP is called a complete instance if for every u, v ∈ V (H),
there is a directed link (u, v) whose cost is equal to the shortest directed path from u to v, and for
every directed link (u, v), the instance contains all shortenings of (u, v) with at most cost c((u, v)).

Lemma 4.2. Any SRAP instance can be made complete by performing metric completion, then
shadow completion, then a second metric completion.

Proof. Let L denote the set of links in the original instance, and L1, L2, L3 denote the links after
each of the three preprocessing steps, respectively. We want to show that L3 is a complete instance.
Clearly the instance is already metrically complete, since the final preprocessing operation is a
metric completion. So it suffices to show that all shortenings of links in L3 already exist in L3.

Consider any link (u, v) ∈ L3. If (u, v) did not arise from the second metric completion step,
then it is in L2 and all of its shortenings were added in the shadow completion step.

So we focus on the case in which (u, v) arose as a metric completion of some path of links
(u = w0, w1), (w1, w2), . . . , (wk−1, wk = v), where all links on this path are in L2. Without loss of
generality, suppose that u lies to the left of v. Consider an arbitrary shortening of (u, v), which
takes the form (s, v) for some s lying between u and v. There must be some link (wi, wi+1) on the
path such that wi lies to the left of s, and wi+1 to the right of s. Then (s, wi+1) is a shortening of
(wi, wi+1). Moreover, since (wi, wi+1) ∈ L2, then so is (s, wi+1).

In particular, L2 contains the path of links (s, wi+1), . . . , (wk−1, v) whose total cost is at most
the cost of the path from u to v. And hence, L3 contains the shortening (s, v) of (u, v).

4.2 An R-special 2-approximate solution
We now proceed with the 2-approximate R-special solution for SRAP. First, we make an existential
claim about the existence of a 2-approximate directed solution which only touches terminals, then
we show that we can find one efficiently.

In the proof of Lemma 4.3, we will first show that there is a 2-approximate directed solution
which consists of a collection of directed cycles on nodes of the ring. We will then merge these
cycles to obtain a directed solution which is a single directed cycle.

It is helpful to notice that a undirected cycle on nodes A ⊆ V (H) covers the same set of
dangerous ring-cuts that a directed cycle on A covers, which is also the same set of dangerous
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Figure 3: An example of a SRAP instance undergoing preprocessing steps to obtain a complete
instance. The leftmost SRAP instance has two undirected links ℓ1 (green) and ℓ2 (blue) in L. There
are no links added in L1. The middle picture shows the directed links added in L2, where the green
arcs are shadows of ℓ1 and have cost c(ℓ1), and the blue arcs are shadows of the ℓ2 with cost c(ℓ2).
Finally, the third picture shows the (undominated) directed links added in L3 in yellow. Each of
these arcs have cost c(ℓ1) + c(ℓ2). The final completed SRAP instance contains all of these links.

ring-cuts that the hyper-link A covers. This allows us to use Lemma 1.13 to understand when a
collection of directed cycles is feasible.

For a node set A ⊆ V (H), denote by IA ⊆ V (H) the nodes in the minimal interval containing
A which does not contain er.
Lemma 4.3. Given an instance of SRAP, suppose the optimal solution has cost OPT. Then
there exists a directed solution of cost at most 2OPT whose links consist of a single directed cycle
including r.
Proof. Let (U∗, F ∗) be a full component of the optimal SRAP solution. Then (U∗, F ∗) is a tree.
Starting from an arbitrary vertex in U∗ ∩ V (H), we take an Euler tour of this tree traversing each
link exactly twice. This induces an ordering of the ring nodes which are visited during the tour
a1, . . . , ak, such that the undirected link set F = {(a1, a2), . . . , (ak−1, ak), (ak, a1)} has cost at most
2c(F ∗) by metric completion.

Now, consider the directed link set F⃗ = {(a1, a2), . . . , (ak−1, ak), (ak, a1)}. The cost of F⃗ is at
most c(F ) since it consists of shadows of links in F . Hence c(F⃗ ) ≤ 2c(F ∗). Furthermore, since F⃗
forms a directed cycle on the nodes joined by F ∗, any cut covered by F ∗ is also covered by F⃗ .

Repeating this for each full component in the optimal solution yields a directed solution with
cost at most 2OPT. Furthermore, this directed solution consists of a collection of directed cycles
on the nodes of the ring.

We now exploit the following lemma to obtain a directed solution with cost at most 2OPT
consisting of a single directed (not necessarily simple) cycle.

Lemma 4.4 (Cycle Merging Lemma). Consider a SRAP instance on the ring H = (V (H), E).
Let F⃗S and F⃗A be two directed cycles of links on nodes S,A ⊆ V (H), respectively, where r ∈ S. If
S and A are intersecting as hyper-links, then there exists a directed link set F⃗S∪A which forms a
directed cycle on S ∪A of cost at most c(F⃗S) + c(F⃗A).

Proof. First observe that if A ∩ S ̸= ∅, we simply define F⃗S∪A = F⃗S ∪ F⃗A, and the statement of
the lemma is satisfied.
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So, suppose that A ∩ S = ∅. Denote the cycle links as F⃗S = {(s1, s2), . . . , (sk−1, sk), (sk, s1)},
with s1 = r, and F⃗A = {(a1, a2), . . . , (aℓ−1, aℓ), (aℓ, a1)}. Consider the interval IA of A. Since S
and A are intersecting (as hyper-links), and S contains the root r while r ̸∈ IA, it must be the case
that the cycle formed by F⃗S leaves IA at least once. Let (si, si+1) ∈ F⃗S be a directed link leaving
IA.

Now consider the interval I∗ = I{si,si+1}. We claim that F⃗A leaves I∗ at least once. Indeed,
since (si, si+1) leaves IA, some a ∈ A is in I∗. But all of A cannot be contained in I∗, since then
(si, si+1) leaving IA would imply that si ∈ A, contradicting our assumption that A ∩ S = ∅. Let
(aj , aj+1) ∈ F⃗A be a directed link leaving I∗.

We now define F⃗S∪A to be the directed links along the cycle

s1, . . . , si, aj+1, aj+2, . . . , aj , si+1, . . . , s1.

See Figure 4 for an example. Observe that (si, aj+1) is a shortening of (aj , aj+1) and (aj , si+1) is
a shortening of (si, si+1). Therefore c(F⃗S∪A) ≤ c(F⃗S) + c(F⃗A) as desired. Moreover, F⃗S∪A forms a
cycle on S ∪A.

er

r

sisi+1

aj

aj+1

Figure 4: An example of cycle merging, with F⃗S in purple and F⃗A in green. Note that (si, si+1)
leaves the interval IA, and (aj , aj+1) leaves the interval I{si,si+1}. Dropping these two links, and
adding the shortenings drawn as dotted arcs creates the single cycle F⃗S∪A.

We can now use Lemma 4.4 to transform a directed solution that is a collection of directed
cycles on ring nodes A1, . . . , Ap into a single directed cycle on A :=

⋃p
i=1Ai. Let J⃗ denote the

directed solution consisting of a collection of directed cycles on the nodes in the ring. Since r is a
terminal, it must be contained in some cycle F⃗S0 on S0 ⊆ V (H). We build a new directed solution
starting with F⃗S0 by repeatedly apply Lemma 4.4, cycle merging. In each step, choose a new cycle
F⃗A from J⃗ that has not yet been merged and such that A is intersecting with Si, and update F⃗Si

by merging: F⃗Si+1 ← F⃗Si∪A. If all cycles from J⃗ can be merged in this way, this yields a single
directed cycle. It is feasible, since it is incident to all terminals, and its cost is at most that of J⃗ ,
which is at most 2OPT.

It remains only to show that at every step, if there are un-merged cycles from J⃗ , then one of
them is on a set of nodes which is intersecting with Si. First, observe that F⃗Si is a cycle on all of
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the nodes belonging to the cycles merged so-far, so it suffices to find some un-merged F⃗A in J⃗ such
that A is intersecting with the nodes in one of the cycles merged so-far.

Since J⃗ is feasible, the corresponding collection of undirected cycles is also feasible. Hence,
by Lemma 1.13, the hyper-links on the vertices of the cycles in J⃗ are connected in the hyper-
link intersection graph. Now for any un-merged cycle F⃗A′ , look at the path in the hyper-link
intersection graph from the hyper-link on S0 to the hyper-link on A′. The first hyper-link along
this path corresponding to an un-merged cycle F⃗A must be intersecting with a merged cycle, so is
intersecting with Si.

With the above lemma in hand, and due to our second metric completion step, we can now
shortcut over the non-terminals in the cycle to obtain a 2-approximate directed solution which only
touches terminals.

Lemma 4.5. Given an instance of SRAP, if the optimal solution has cost OPT, then there is a
directed solution of cost at most 2OPT whose links consist of a single directed cycle with node set
R.

Proof. This follows by taking the directed cycle solution F⃗ from Lemma 4.3 and short-cutting
through all non-terminal nodes. Since the third preprocessing step ensures that the directed links
are metrically complete, replacing a path of directed links with a single link cannot increase the
cost. Hence, the resulting solution has cost at most c(F⃗ ) ≤ 2OPT.

Having shown that there exists a directed 2-approximate solution to any SRAP instance which
is incident only on the terminals R, we now proceed to show how to compute one in polynomial
time. In particular, we will prove that the optimal such solution can be found efficiently. And
moreover, the solution can be assumed to have additional structure.

Recall that the Weighted Ring Augmentation Problem (WRAP) is a special case of SRAP in
which all nodes are terminals, and there are no nodes outside of the ring H. A directed solution F⃗
to WRAP is non-shortenable if it is feasible but deleting or strictly shortening any link f ∈ F⃗
results in an infeasible solution. Traub and Zenklusen proved that a non-shortenable directed
solution to WRAP has a planar arborescence structure, and can be computed in polynomial time.

Lemma 4.6 (Lemma 2.5 in [18]). A non-shortenable optimal directed solution to the WRAP
problem can be found in polynomial time.

Reducing our problem to a WRAP instance and applying the above lemma yields the main
theorem of this section:

Theorem 2.1. There is a polynomial time algorithm for SRAP which yields a directed solution F⃗
of cost at most 2OPT such that:

1. F⃗ is only incident on the terminals R

2. (R, F⃗ ) is an r-out arborescence.

3. (R, F⃗ ) is planar when V (H) is embedded as a circle in the plane.

4. For any v ∈ V , no two directed links in δ+
F⃗
(v) go in the same direction along the ring.
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Proof. Consider a SRAP instance on the ring H = (V (H), E) with terminals R ⊆ V (H), root
r ∈ R, and links L. We construct a new ring H ′ = (R,E′) on the terminals by iteratively replacing
each non-terminal node in V (H) with an edge between its two neighbors in H. We now create a
WRAP instance on H ′ by taking the subset L′ of links which are directed links incident only to R.

We apply Lemma 4.6 (Lemma 2.5 from [18]) to get a non-shortenable optimal directed solution
F⃗ to this WRAP instance. Since Lemma 4.5 guarantees the existence of a directed 2-approximation
which only touches terminals, this implies that c(F⃗ ) ≤ 2OPT.

Now consider F⃗ as a solution to the SRAP instance on H. Since F⃗ is non-shortenable when
viewed as a solution to the WRAP instance on H ′, Theorem 2.6 from [18] shows that it satisfies
the three conditions when viewed as a solution to H. It remains only to argue that F⃗ is actually
feasible. This is immediate from the arborescence structure of F⃗ : there is a path from r to every
terminal.

5 A (1 + ln 2 + ε)-approximation for SRAP
In this section, we describe a polynomial time algorithm for SRAP which achieves an approximation
ratio of (1 + ln 2 + ε). Before writing the algorithm, we comment on a slight departure of our
algorithm from the relative greedy algorithm for standard WRAP.

Given any SRAP instance, we may convert it into an equivalent complete instance (see sec-
tion 4.1). We observe that for any directed link f = (u, v) on the ring, there is a collection of
undirected links whose coverage is at least that of f , and whose total cost is at most c(f). We call
this set κf . Indeed, if f is a shadow of an undirected link ℓ, then we may take κf = {ℓ}. Otherwise, f
arises from the metric completion of some directed path of links (u = s0, s1), (s1, s2), . . . , (sk−1, sk =
v). Each of these links in the directed path may themselves be shortenings of undirected links
{ℓ1, . . . , ℓk}. In this case, κf = {ℓ1, . . . , ℓk}. Note in particular that κf covers all of the dangerous
ring-cuts that f covers, so if f is in some R-special solution F⃗0, then f ∈ dropF⃗0

(κf ) (see section 6
for a formal definition of drop).

In order to show that our algorithm makes sufficient progress at each step, we must have that
the cost of our mixed solution does not ever increase over the course of the algorithm. In the case
of WRAP, this is immediate, since any directed link is a shadow of some single undirected link of
the same cost, an α-thin set. However, in our case, κf may not be α-thin, so we explicitly consider
this as a separate case in each step of our algorithm. See Algorithm 1.

The proof of the following theorem follows from a standard analysis of the relative greedy
algorithm as in [4], [19], and [18]. We include it here for completeness.

Theorem 5.1. Algorithm 1 is a (1 + ln 2 + ε)-approximation algorithm for SRAP.

Proof. First, we note that in each iteration of the algorithm, |F⃗ | will be reduced by at least 1. The
initial value of |F⃗ | is at most |R| − 1, so there are polynomially many iterations. By Theorem 8.1,
each iteration can be executed in polynomial time. Hence Algorithm 1 runs in polynomial time.

The returned solution S is feasible since the invariant that Si ∪ F⃗i is a feasible mixed solution
is maintained throughout the algorithm.

To complete the proof, we show that S has cost at most (1 + ln 2 + ε) · c(OPT). Denote by
OPTγ the optimal γ-restricted solution. Apply the decomposition theorem, Theorem 2.3, to OPTγ

and the R-special solution F⃗0. It gives a partition Z of OPTγ into α-thin parts, and some Q ⊆ F⃗0
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Algorithm 1 Relative greedy algorithm for SRAP
Input: A complete instance of SRAP with graph G = (V,E∪̇L), ring H = (V (H), E), terminals
R ⊆ V (H) and c : L→ R. Also an ε > 0.
Output: A solution S ⊆ L with c(S) ≤ (1 + ln(2) + ε) · c(OPT).

1. Compute a 2-approximate R-special directed solution F⃗0 (Theorem 2.1).

2. Let ε′ := ε/2
1+ln 2+ε/2 and γ := 2⌈1/ε

′⌉.

3. For each A ⊆ V (H) where |A| ≤ γ, compute the cheapest full component joining A and
denote the cost by cA.

4. Create an instance of γ-restricted Hyper-SRAP on the ring H = (V (H), E) with hyper-links
L = {ℓA : A ⊆ R, |A| ≤ γ}. Set the cost of hyper-link ℓA to be cA.

5. Initialize S0 := ∅

6. Let α := 4⌈4/ε⌉

7. While F⃗i ̸= ∅:

• Increment i by 1.
• Compute the α-thin subset of hyper-links Zi ⊆ L minimizing c(Zi)

c(drop
F⃗0

(Zi)∩F⃗i−1)
.

• If c(Zi)

c(drop
F⃗0

(Zi)∩F⃗i−1)
> 1, then update Zi = κf for some f ∈ F⃗i−1.

• Let Si := Si−1 ∪ Zi and let F⃗i := F⃗i−1 \ dropF⃗0
(Zi).

8. Return A SRAP solution with full components corresponding to the hyper-links in S := Si.

with c(Q) ≤ ε/4 · c(F⃗0) ≤ ε/2 · c(OPT). Then observe that

c(Zi)

c(dropF⃗0
(Zi) ∩ F⃗i−1)

≤ min
Z∈Z

c(Z)

c(dropF⃗0
(Z) ∩ F⃗i−1)

≤
∑

Z∈Z c(Z)∑
Z∈Z c(dropF⃗0

(Z) ∩ F⃗i−1)
≤ c(OPTγ)

c(F⃗i−1)− c(Q)
,

where the first inequality is by the choice of Zi in the algorithm, and the second and third fol-
low from the statement of Theorem 2.3. Since f ∈ dropF⃗0

(κf ), our choice of Zi implies that,
c(Zi)/c(dropF⃗0

(Zi) ∩ F⃗i) ≤ 1. Therefore, since dropF⃗0
(Zi) ∩ F⃗i−1 = F⃗i−1 \ F⃗i, we have

c(Zi) ≤ min

{
1,

c(OPTγ)

c(F⃗i)− c(Q)

}
· c(F⃗i−1 \ F⃗i) ≤

∫ c(F⃗i−1)

c(F⃗i)
min

{
1,
c(OPTγ)

x− c(Q)

}
dx.
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Finally, sum over all iterations of the algorithm to get the cost of the output S:

c(S) =
∑
i

c(Zi)

≤
∫ c(F⃗0)

0
min

{
1,
c(OPTγ)

x− c(Q)

}
dx

=

∫ c(OPTγ)+c(Q)

0
1 dx+

∫ c(F⃗0)

c(OPTγ)+c(Q)

c(OPTγ)

x− c(Q)
dx

≤
(
1 +

ε

2

)
· c(OPTγ) + ln

(
c(F⃗0)− c(Q)

c(OPTγ)

)
· c(OPTγ)

≤
(
1 + ln(2) +

ε

2

)
· c(OPTγ)

And applying Lemma 1.16 for our choice of ε′ and γ from the algorithm, we have c(OPTγ) ≤
(1 + ε′) · c(OPT). Hence, we get the desired bound

c(S) ≤
(
1 + ln(2) +

ε

2

)
· (1 + ε′) · c(OPT) = (1 + ln(2) + ε) · c(OPT).

6 Dropping Directed Links
The main reason that we work with structured R-special directed solutions to SRAP is that it
allows us to cleanly characterize when a directed link can be dropped after a collection of hyper-
links are added to the solution. In this section, we recall the properties of an R-special directed
solution and use them give such a characterization.

Given an instance of Hyper-SRAP we can use the root r and root-edge er to define a notion
of right and left along the ring. In particular, we imagine deleting the edge er from the ring and
consider the root to be the left-most node on the remaining path. The other node incident to er is
the right-most node in the ring.

Consider a R-special directed solution F⃗ for the SRAP problem. Recall that F⃗ has the following
properties:

1. F⃗ is only incident on terminals R.

2. (R, F⃗ ) is an r-out arborescence.

3. (R, F⃗ ) is planar when V (H) is embedded as a circle in the plane.

4. For any v ∈ R, no two directed links in δ+
F⃗
(v) go in the same direction along the ring.

Given an R-special directed SRAP solution F⃗ , we associate to each cut C ∈ C a single link
which is responsible for covering it, as in [18]. In particular, an arc ℓ = (u, v) ∈ F⃗ is responsible
for covering a cut C ∈ C if ℓ enters C and there is no other arc on the unique r–u path in (R, F⃗ )
which enters C. We denote the set of cuts for which a link ℓ ∈ F⃗ is responsible by RF⃗ (ℓ). Notice
that RF⃗ (ℓ) ̸= ∅ for all ℓ ∈ F⃗ , since if some directed link were not responsible for any cuts, then it
could be deleted without affecting the feasibility of F⃗ , but this is not true of any arc in an R-special
directed solution.
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We will show that every ring-dangerous cut C ∈ C has exactly one directed link responsible
for it in an R-special solution F⃗ . First we will need the following lemma which follows from the
properties of F⃗ .

Lemma 6.1. Let F⃗ be an R-special directed solution for SRAP.

(i) For any v ∈ R, the set of descendants of v in (R, F⃗ ) is of the form R ∩ I for some ring
interval I ⊆ V (H).

(ii) For v1, v2 ∈ R, the least common ancestor of v1 and v2 in (R, F⃗ ) lies between v1 and v2.

This is an analogue to Lemma 4.8 from [18]. In fact, this lemma follows immediately from
Lemma 4.8 from [18] by simply removing the Steiner nodes in the ring and viewing F⃗ as an R-
special solution on a ring with only the terminals R (c.f. the proof of Theorem 2.1).

Lemma 6.2. For each cut C ∈ C, there is exactly one directed link ℓ ∈ F⃗ responsible for it.

Proof. A cut C ∈ C clearly has at least one link responsible for it, since F⃗ enters all such cuts. On
the other hand, no two links can both be responsible for C. This is because C is an interval, so if
(u1, v1) ̸= (u2, v2) are both responsible for C, then the least common ancestor v of v1 and v2 is in
C, by Lemma 6.1(ii). Since r ̸∈ C, there must be some link in the r–v path in (R, F⃗ ) (and hence
also on the r–v1 path) entering C, contradicting that (u1, v1) is responsible for C.

We can now define when a directed link will be dropped from an R-special directed solution F⃗ .
In particular, if a collection of hyper-links K is added to the solution, then we will drop a directed
link if and only if all cuts it is responsible for are covered by the hyper-links in K. Let δK(C) be
the set of hyper-links in K which cover C ∈ C.

Formally, denote

dropF⃗ (K) = {f ∈ F⃗ : |δK(C)| ≥ 1 for all C ∈ RF⃗ (f)}.

With this definition, if a collection of hyper-links K is added to an R-special directed solution F⃗
to SRAP, and dropF⃗ (K) is removed, then the solution remains feasible as a mixed SRAP solution.

Our ultimate goal of this section is an alternate characterization of the set dropF⃗ (K). For this,
we will use the notion of the hyper-link intersection graph. Recall that a pair of hyper-links ℓ1 and
ℓ2 are intersecting if they share a vertex or there is a vertex in ℓ between two vertices in ℓ′ and a
vertex of ℓ′ lies between two vertices of ℓ.

Given an instance of Hyper-SRAP with ring H = (V (H), E) and hyper-links L, we define the
hyper-link intersection graph Γ as follows. For each hyper-link ℓ ∈ L there is a node vℓ. Two nodes
vℓ1 and vℓ2 are adjacent in the hyper-link intersection graph if and only if ℓ1 and ℓ2 are intersecting
hyper-links. For K ⊆ L, Γ(K) is the hyper-link intersection graph restricted to the hyper-links in
K.

The following lemma and its proof are similar to the analogous statements for standard links
(Lemma 5.4 in [18]).

Lemma 6.3. Let K ⊆ L be a collection of hyper-links, and C ∈ C a dangerous ring-cut. Then
δK(C) ̸= ∅ if and only if there is a path in Γ(K) from a hyper-link containing some v ∈ C to a
hyper-link containing some w ̸∈ C.
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Proof. If δK(C) ̸= ∅, then clearly such a path in Γ(K) exists. In particular, any single hyper-link
in δK(C) forms a path. Conversely, suppose such a path exists in Γ(K), but that δK(C) = ∅
for contradiction. That is, any hyper-link in K is either fully contained C or fully contained in
V (H) \C. Since the path starts with a hyper-link containing v ∈ C, and ends with one containing
w ̸∈ C, the path must contain some pair of intersecting hyper-links ℓ1 and ℓ2 with ℓ1 contained in
C, while ℓ2 is contained in V (H) \C. Hence, clearly ℓ1 and ℓ2 do not share a vertex. Furthermore,
since C is an interval, any vertex lying between two vertices in ℓ1 must also lie in C, and hence not
in ℓ2. This contradicts that ℓ1 and ℓ2 are intersecting.

Lemma 6.3 yields Lemma 1.13 as an immediate corollary, but we will not need Lemma 1.13 in
this section.

The notions of v-bad and v-good were used in [18], but the definitions need to be modified for
our setting.

Definition 6.4. Let v ∈ R and consider the maximal interval Iv ⊆ V (H) containing v such that
Iv does not contain a terminal which is a non-descendant of v in (R, F⃗ ). We say that the nodes in
Iv are v-bad, and all nodes in V (H) \ Iv are v-good.

Observe that by Lemma 6.1(i), the interval of v-bad nodes actually contains all descendants of
v (but may also contain some Steiner nodes in the ring).

The following lemmas are analogous to Lemmas 5.6 and 2.10, respectively, in [18]. The proofs
are similar, but we include them here as our definitions of v-good and v-bad have changed.

Lemma 6.5. A directed link (u, v) ∈ F⃗ is responsible for a cut C ∈ C if and only if v ∈ C and all
of the nodes in C are v-bad.

Proof. If v ∈ C and all nodes of C are v-bad, then C ∩ R contains only descendants of v. In
particular, u ̸∈ C, so (u, v) enters C, and no other link on the r–v path in F⃗ can enter C.

Conversely, if (u, v) is responsible for cut C, then it enters C, so v ∈ C. Moreover, for every
t ∈ C ∩ R, the r–t path in F⃗ must have a link entering C. By Lemma 6.2 we know that (u, v)
is the only link responsible for C, so every such t must be a descendant of v. That is, C ∩ R
are all descendants of v, and in particular, C contains no terminals which are non-descendants of
v. Hence, since C is an interval, it is contained in the maximal interval containing no terminal
non-descendants of v, which is precisely the set of v-bad nodes.

This yields the main result of this section, which provides a characterization of when a directed
link (u, v) can be dropped, namely when v is connected to a v-good vertex through the hyper-link
intersection graph. This is the criterion we will work with in section 7.

Lemma 6.6. For a collection of hyper-links K, a directed link (u, v) is in dropF⃗ (K) if and only if
Γ(K) contains a path from a hyper-link containing v to a hyper-link containing a v-good vertex w.

Proof. First suppose that there is such a path in Γ(K). Then any cut C ∈ RF⃗ ((u, v)) for which
(u, v) is responsible cannot contain w, since by Lemma 6.5 it only contains v-bad nodes. Hence, by
Lemma 6.3, we have that δK(C) ̸= ∅.

Conversely, if v is not connected to a v-good vertex by K in the hyper-link intersection graph,
then consider the set Kv ⊆ V (H) of nodes reachable from v via the hyper-link intersection graph
of K. Let IKv be the interval of these nodes. Then IKv ∈ C, since v ∈ IKv , r ̸∈ IKv (since r is
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v-good) and it is a 2-cut. Moreover, since Kv are all v-bad, then IKv are as well. By Lemma 6.5,
this implies that (u, v) is responsible for the cut IKv . We finish the proof by arguing that K does
not cover IKv , implying that (u, v) ̸∈ dropF⃗ (K). This is clear from the definition of the hyper-link
intersection graph: if some hyperlink in K covers IKv , then it must be intersecting with a hyperlink
reachable from v in the hyper-link intersection graph, thus contradicting that Kv are all of the
nodes reachable from v in the hyper-link intersection graph of K.

7 The Decomposition Theorem for Hyper-SRAP
In this section, we prove the following theorem.

Theorem 2.3 (Decomposition Theorem). Given an instance of Hyper-SRAP (H = (V (H), E), R,L),
suppose F⃗0 is an R-special directed solution and S ⊆ L is any solution. Then for any ε > 0, there
exists a partition Z of S into parts so that:

• For each Z ∈ Z, Z is α-thin for α = 4⌈1/ε⌉.

• There exists Q ⊆ F⃗0 with c(Q) ≤ ε · c(F⃗0), such that for all f ∈ F⃗0 \Q, there is some Z ∈ Z
with f ∈ dropF⃗0

(Z). That is, F⃗0 \Q ⊆
⋃

Z∈Z dropF⃗0
(Z).

We follow the approach in [18] which proves the result when all hyper-links have size 2 and
R = V (H). We will first partition the hyper-links in S into a collections of festoons whose spans
form a laminar family. We will then construct a dependency graph whose nodes correspond to
festoons, which will allow us to partition the links of S into the desired α-thin pieces. In the
general hyper-link setting, the festoons are composed of hyper-links rather than links of size 2.

We begin by defining festoons in the context of hyper-links. The interval of a hyper-link ℓ is
denoted Iℓ and is the set of vertices in the interval between the leftmost vertex and the rightmost
vertex of ℓ. We say that hyper-links ℓ and ℓ′ are crossing if their intervals intersect and neither is
a subset of the other. Recall that two hyper-links are intersecting if they share a vertex, or there
is a vertex in ℓ between two vertices in ℓ′ and a vertex of ℓ′ lies between two vertices of ℓ (when
the vertices are viewed in the left to right order along the ring). Notice that if two hyper-links are
crossing, then they also are intersecting.

Definition 7.1. A festoon is a set of hyper-links X ⊆ L which can be ordered ℓ1, . . . , ℓp such that
ℓi and ℓi+1 are crossing for i ∈ {1, . . . , p− 1} and Iℓi and Iℓj are disjoint unless |i− j| = 1.

Notice that whether a set of hyper-links is a festoon only depends on their hyper-link intervals.
Let C′ = {C ⊆ V (H) : |δE(C)| = 2, r ̸∈ C} be the family of minimum cuts of the ring H. One of
the key properties of festoons is that no minimum cut is covered by more than 4 hyper-links in a
festoon.

Lemma 7.2. Let X be a festoon and C ∈ C′. Then |{ℓ ∈ X : ℓ covers C}| ≤ 4.

Proof. Suppose X = ℓ1, . . . , ℓp is a festoon of hyper-links and C ∈ C′. Then C is an interval between
vertices say u and v in V (H), where u is the left endpoint of C and v is the right endpoint.

We will show that there are at most two hyper-links in δX(C) which contain vertices to the left
of u. A symmetric argument shows that there can be at most two hyper-links in δX(C) containing
a vertex to the right of v. Together, these imply that there are at most 4 hyper-links in δX(C).
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Suppose there are 3 hyper-links covering C which contain vertices to to the left of u. Since
they cover C, each of these hyper-links must also contain some vertex in C. Thus, their hyper-link
intervals all contain the vertex u. But this is impossible, as the definition of festoons requires that
Iℓi and Iℓj are disjoint unless |i− j| = 1.

Definition 7.3 (α-thin set of hyper-links). A set of hyper-links K is α-thin if there exists a maximal
laminar subfamily D of C′ such that for every cut C ∈ D, we have |{ℓ ∈ K : ℓ covers C}| ≤ α.

Given a festoon X, let IX denote the festoon interval which is the interval from the left-most
vertex in the festoon to the right-most. We can partition S into a collection of festoons X , so that
the festoon intervals form a laminar family. To do this, we iteratively construct the partition by
choosing a festoon with the largest interval in each iteration and adding it to the partition. We
now prove that if the set S is partitioned in this way, it yields a partition X such that the set of
festoon intervals form a laminar family.

Lemma 7.4. The festoon intervals {IX : X ∈ X} form a laminar family.

Proof. Suppose that X,Y ∈ X are such that IX and IY cross. We also assume without loss of
generality that X was added the festoon family before Y was.

Let ℓ1, . . . , ℓp be the hyper-links in the festoon X, numbered according to the festoon order. We
will assume X is to the left of Y . Since they cross, there is some hyper-link in Y whose left endpoint
is in IX . But then this hyper-link would have been included in X to form a longer interval.

Given the laminar structure of the festoon intervals, we can define a partial order on the festoons
in X . In particular, we will say that X ≺ Y if IX ⊆ IY .

Definition 7.5. We say that two festoons X and Y are tangled if some hyper-link in X is
intersecting with some hyper-link of Y .

Suppose that X1, . . . , Xp is a sequence of festoons such that X1 contains a vertex v ∈ R \ r, Xi

and Xj are tangled iff |i − j| = 1, and Xp contains a v-good vertex, but no festoons Xi for i < p
contain a v-good vertex. Then by Lemma 6.6, {X1, . . . , Xp} is a minimal collection of festoons
such that the directed link (u, v) ∈ F⃗ can be dropped. We will choose for each v ∈ R, a minimal
collection of festoons Xv = {X1, . . . , Xp} as above so that |IXp | is minimized. This will allow us to
construct the dependency graph with the desired properties.

We now turn to defining the dependency graph (X , A). It will have a vertex for each festoon
in X , and its arcs are obtained by inserting for each directed link (u, v) ∈ F⃗ a directed path
corresponding to a minimal set of festoons as above. Formally, for each v ∈ R \ r, there will be a
directed path Pv consisting of the festoons in Xv where (Xi, Xi−1) ∈ A for i ∈ {2, . . . p}.

It will be helpful to consider a subgraph of the dependency graph which is constructed only
from paths Pv where v ∈ U for some set of terminals U ⊆ R \ r. This is called the U-dependency
graph.

We will use that the dependency graph is a branching, which follows from the minimality in its
construction and the partial order defined on festoons. Clearly, this implies that the U -dependency
graph is also a branching for any U ⊆ R \ r.

Lemma 7.6. The dependency graph (X , A) is a branching. That is, the in-degree of every node
X ∈ X is at most 1 and it contains no cycles.
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Proof. Since (X,Y ) ∈ A implies Y ≺ X, it is clear that (X , A) contains no directed cycles. We
now show that each festoon X has in-degree at most 1. Suppose for the sake of contradiction that
(Y,X) ∈ A and (Z,X) ∈ A where Y ̸= Z. Since the arcs in A arise from a collection of directed
paths, it must be the case that (Y,X) ∈ Pv and (Z,X) ∈ Pw for distinct vertices v, w ∈ R \ r.

We will use the following key property, used in [18], which continues to hold in our setting: for
any pair of terminals v, w ∈ R \ r, either w is v-good or v is w-good. Hence, we assume without
loss of generality that w is v-good.

Since (Z,X) ∈ Pw, we have that w is contained in the festoon interval IX of X. Since the
v-good vertices form an interval, X must contain a hyper-link which contains a v-good vertex. But
by Lemma 6.6, this means that Y is not necessary for a directed link entering v to be dropped,
contradicting (Y,X) ∈ Pv.

We can bound the thinness of the components of the dependency graph with the following
lemmas, which are direct extensions of analogous lemmas in [18]. Let α be some positive integer,
and U ⊆ R \ r.

Lemma 7.7. If X ′ is a connected component of the U -dependency graph and the set

{Z ∈ X ′ : X ⪯ Z, X and Z are tangled}

has cardinality at most α for every festoon X ∈ X ′, then X ′ is 4(α+ 1)-thin.

Proof. The proof is the same as the proof of Lemma 7.16 in [18]. Note that Lemma 7.8 in [18]
holds for festoons of hyper-links as well as standard festoons.

Lemma 7.8. Suppose X and Y are festoons in the same connected component of the U -dependency
graph. If X and Y are tangled, then they have an ancestor-descendant relationship in the U -
dependency graph.

Proof. Again, the proof is a direct extension of Lemma 7.17 in [18].

Lemma 7.9. Let (X ′, A′) be a connected component of the U -dependency graph. If

|{u ∈ V : P ∩ Pu ̸= ∅}| ≤ α

for every directed path P ⊆ A′ then the collection of links which are contained in festoons of X ′ is
4(α+ 1)-thin.

Proof. First, notice that for every X ∈ X , there are at most α festoons in X ′ which are at least X
in the partial ordering. This is because X can be tangled with at most one festoon from each Pu,
which follows from minimality as well as Lemma 7.8. Hence, by Lemma 7.7, X ′ is 4(α+ 1)-thin as
desired.

Having shown that the dependency graph is a branching, the property given in Lemma 7.9
is enough to replicate the same argument which was introduced by Traub and Zenklusen in [19]
for the Weighted Tree Augmentation Problem to prove the decomposition theorem. We break the
dependency graph up into pieces, such that each corresponds to a collection of hyper-links which
is α-thin, while only destroying a small fraction of the sets Pu. We reproduce the proof below.

25



Theorem 2.3 (Decomposition Theorem). Given an instance of Hyper-SRAP (H = (V (H), E), R,L),
suppose F⃗0 is an R-special directed solution and S ⊆ L is any solution. Then for any ε > 0, there
exists a partition Z of S into parts so that:

• For each Z ∈ Z, Z is α-thin for α = 4⌈1/ε⌉.

• There exists Q ⊆ F⃗0 with c(Q) ≤ ε · c(F⃗0), such that for all f ∈ F⃗0 \Q, there is some Z ∈ Z
with f ∈ dropF⃗0

(Z). That is, F⃗0 \Q ⊆
⋃

Z∈Z dropF⃗0
(Z).

Proof. Let q := ⌈1ε⌉. We will construct an arc labeling for each connected component (X ′, A′) of
the (R \ r)-dependency graph (X , A), which is a branching by Lemma 7.6. The arcs in the same
set Pu will receive the same label.

We define the labeling inductively as follows. For each directed path Pu which begins at the
root of the arborescence (X ′, A′), we set the labels of the arcs in this path to be 0. For a directed
path Pu which begins at a node X which is not the root, we set the label of the arcs in Pu to be
j + 1, where j is the label of the unique arc entering X. We perform the labeling in this fashion
for each connected component of the dependency graph to obtain a labeling of all arcs in A

Now, let Qi ⊆ F⃗ be the set of directed links (u, v) such that Pv received label i, where i ∈
{0, . . . , q − 1}. This is a partition of F⃗ into q parts. Hence, the average cost of the sets Qi is
c(F⃗ )/q, implying that the cheapest set among Q0, . . . , Qq−1 has cost at most c(F⃗ )/q. Let this
cheapest part be denoted by Q ⊆ F⃗ .

We define U ⊆ R to be those terminals which are not entered by a directed link in Q, and
consider the U -dependency graph. The U -dependency graph is obtained by deleting from (X , A)
all arcs with label i for some i ∈ {0, . . . , q − 1}. Hence, each of its connected components satisfies
the hypothesis of Lemma 7.9 where α = q − 1, implying that the set of hyper-links in the festoons
of each component is 4q-thin. This yields our partition of the hyper-links of S into parts where
each part is 4⌈1ε⌉-thin.

Finally, for each directed link (u, v) ∈ F⃗ \ Q there is some connected component of the U -
dependency graph which contains all the arcs in Pv. Hence, (u, v) is droppable by adding all
the hyper-links in the festoons of this component. Since, c(Q) ≤ ε · c(F⃗ ), we have the desired
property.

8 Dynamic Programming to find the best α-thin component
In this section, we prove that, given an R-special directed solution F⃗0, and a subset F⃗ ⊆ F⃗0, the
α-thin collection of γ-restricted hyper-links K which minimizes the ratio

c(K)

c(dropF⃗ (K) ∩ F⃗0)

can be found in polynomial time.
As is now standard following the results of [19][18][17], we will focus on maximizing slackρ(K)

defined as
slackρ(K) := ρ · c(dropF⃗ (K) ∩ F⃗0)− c(K).
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Notice that deciding whether the ratio c(K)
c(drop

F⃗
(K)) is smaller than a fixed ρ∗ is equivalent to

deciding whether slackρ∗(K) is greater than 0. Thus, if we can efficiently find a maximizer of the
slack function for any given ρ, then we can use binary search to obtain our desired result.

It will be convenient for the results in section 9 to prove a more general result allowing different
cost functions on the two terms of the slack function.

Theorem 8.1. Given an instance of SRAP, let F⃗0 be an R-special directed solution. Let c̃ : F⃗0 →
R≥0 be a cost function on F⃗0. Then a maximizer of c̃(dropF⃗0

(K))− c(K) over all α-thin subsets of
γ-restricted hyper-links can be computed in polynomial time.

Given Theorem 8.1, we can maximize slackρ by setting c̃(ℓ) = ρ · c(ℓ) for ℓ ∈ F⃗ ∩ F⃗0 and 0
otherwise. We will prove the above theorem by dynamic programming.

Traub and Zenklusen prove this optimization theorem for the WRAP problem in [18]. The proof
in our setting is an extension of their methods. The key differences in our context are twofold. First,
we are working with an R-special directed solution F⃗0 which is incident only on the terminals R,
whereas in WRAP, the arborescence contains all the nodes of the ring. Secondly, we must extend
their techniques to hyper-links, rather than standard undirected links containing pairs of vertices
of the ring.

To handle this, we will add artificial links to the R-special solution F⃗0 to obtain a V (H)-special
solution F⃗ ′, which allows us to extend the least common ancestor function to all subsets of ring
nodes. This allows us to leverage Lemma 8.4, which is the analogue of Lemma 2.11 in [18], and is
crucial in computing new table entries from already computed ones. Finally, we exploit the fact
that we are only working with hyper-links of size at most γ, implying that there are polynomially
many hyper-links available.

To state Lemma 8.4, we will need to extend the notion of the least common ancestor to a set of
ring nodes, some of which may not be involved in the arborescence F⃗0. We first prove some useful
properties of v-bad intervals. Recall that for a terminal v ∈ R, its v-bad interval is the maximal
interval containing v which does not include a terminal non-descendant of v in F⃗0. We show that
this collection of intervals is a laminar family.

Lemma 8.2. Suppose F⃗0 is an R-special solution, and let Iv ⊆ V (H) denote the v-bad interval.
Then the family of all v-bad intervals F = {Iv : v ∈ R} is laminar.

Proof. Consider two terminals u and v with u-bad interval Iu and v-bad interval Iv. By Lemma 6.1(ii),
the least common ancestor (in F⃗0) w of u and v, lies between them. If w is not u or v, then it is a
non-descendant of both of them, so neither Iu nor Iv can contain w. Since u ∈ Iu and v ∈ Iv, these
intervals do not intersect.

Otherwise, w is equal to either u or v; suppose w = u without loss of generality. But then all
non-descendants of u are non-descendants of v, so Iv ⊆ Iu. Thus, the family is laminar.

We now describe how we add artificial directed links to the R-special solution F⃗0 to obtain a
V (H)-special solution F⃗ ′. We will then use F⃗ ′ to define a notion of least common ancestor in F⃗0

that is defined for any subset of ring nodes.
For each terminal v ∈ R, define the set of nodes Sv ⊆ V (H) to consist of all nodes u such

that Iv is the minimal interval of F which contains u. Notice that Sv is an interval containing
exactly one terminal, namely v, and potentially Steiner nodes to the left and right of v. Suppose
Sv = SL

v ∪ SR
v ∪ {v} where SL

v and SR
v are the (possibly empty) sets of Steiner nodes in Sv to the
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right and left of v respectively. Suppose SL
v = {sL0 , . . . , sLk } ordered right to left along the ring, and

SR
v = {sR0 , . . . , sRm} ordered left to right along the ring. We now add the set of artificial directed

links {(v, sL0 ), (sL0 , sL1 ), . . . , (sLk−1, s
L
k )} ∪ {(v, sR0 ), (sR0 , sR1 ), . . . , (sRm−1, s

R
m)}. See Figure 5.
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Figure 5: An example of an R-special solution with R = {r, a, b, c, d} and its extension to an
artificial V (H)-special solution. The artificial links are purple. The r-bad interval is always V (H).
The a-bad interval is shown in cyan. The b-bad and c-bad intervals are green, and the d-bad interval
is dark blue. Note that lca({e, f}) = e and lca({e, f, d}) = b.

When these artificial links are added to F⃗0, we obtain an associated V (H)-special solution F⃗ ′.
Observe that for a terminal v, the set of descendants of v in F⃗ ′ (including v itself) is exactly its
v-bad interval Iv.

Definition 8.3 (Extended Least Common Ancestor Function). Suppose F⃗0 is an R-special solution
and A ⊆ V (H). Then the least common ancestor of A with respect to F⃗0 is

lca(A) := lcaF⃗ ′(A),

where lcaF⃗ ′(A) is the least common ancestor of A in the artificial solution F⃗ ′.

Notice that the above definition coincides with the standard least common ancestor function
with respect to F⃗0 on sets A which consist only of terminals.

Now we can state the key Lemma 8.4. For a set of hyper-links S, let V (S) :=
⋃

ℓ∈S ℓ.

Lemma 8.4. If F⃗0 is an R-special directed solution to SRAP and S ⊆ L is a collection of hyper-links
which form a connected component in the hyper-link intersection graph, then

dropF⃗0
(S) =

( ⋃
v∈V (S)

δ−
F⃗0
(v)
)
\ δ−

F⃗0
(lca(V (S))).

Proof. First, observe that if V (S)∩R = ∅, then both sets in the lemma statement are empty, and
the lemma is true. So assume that V (S) contains some terminal.

Since δ−
F⃗0
(v) = ∅ whenever v ̸∈ R, we consider some vertex v ∈ V (S) ∩ R. Suppose that

v ̸= lca(V (S)). Since v ∈ V (S), there must be some vertex u in V (S) which is not a descendant
of v with respect to F⃗ ′. Since the set of descendants of v in F⃗ ′ is exactly the v-bad interval Iv, we
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have that u is a v-good vertex. Thus, by Lemma 6.6, we have that δ−
F⃗0
(v) ∈ dropF⃗0

(S), since S
connects v to a v-good vertex via the hyper-link intersection graph.

On the other hand, if v = lca(V (S)), then all other vertices in V (S) are descendants of v in F⃗ ′.
Again, the set of descendants of v in F⃗ ′ is its v-bad interval Iv, so all vertices in V (S) are v-bad,
and so by Lemma 6.6, δ−

F⃗0
(v) is not contained in dropF⃗0

(S).

In the following, we will build up a solution by considering subproblems defined on intervals of
the ring. As such we need a definition of a hyper-link set which is an α-thin with respect to an
interval C ⊆ V (H).

For a ring H = (V (H), E), let the set of 2-cuts not containing the root be denoted by C′ :=
{C ⊆ V (H) : |δE(C)| = 2, r ̸∈ C}. Recall that a collection of hyper-links K is α-thin if there exists
a maximal laminar subfamily D of C′ such that there are at most α hyper-links in K which cover
C for each C ∈ D.

Definition 8.5. A collection of hyper-links K is (α,C)-thin if there exists a maximal laminar
subfamily D of C′ on ground set C, such that for each C̄ ∈ D, there are at most α hyper-links from
K which cover C̄.

We will use the notation δ(C) to denote the set of hyper-links which cover the cut C ∈ C′. We
maintain a table T of polynomial size with a table entry T [C,B, T , ϕ, ψ] where:

• C ∈ C′,

• B ⊆ δ(C) is of size at most α,

• T is a partition of B,

• ϕ : T → V ,

• ψ : T → {0, 1}.

Note that there are |V (H)|2 choices for C. Since there are at most |V (H)|γ possible γ-restricted
hyper-links, there are at most |V (H)|γα choices for B. Finally, if α is a constant then there are
constantly many choices for T and ψ, and polynomially many choices for ϕ. Thus, the overall
dimensions of the table are polynomial.

We now describe how to interpret a subproblem corresponding to a table entry T [C,B, T , ϕ, ψ].
A subset S ⊆ L of hyper-links realizes this table entry if:

• The hyper-links in S contain some vertex of C,

• δS(C) = B,

• T consists of the non-empty sets Si ∩ B, where S1, . . . , Sq are the connected components of
S in the hyper-link intersection graph,

• For each set Si ∩B ∈ T , we have ϕ(Si ∩B) = lca(V (Si)),

• For each set Si ∩B ∈ T , we have ψ(Si ∩B) = 1 if and only if ϕ(Si ∩B) ∈ V (Si).
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Thus, the table entry T [C,B, T , ϕ, ψ] contains the maximizer and maximum value of

c̃

(
dropF⃗0

(S) ∩
⋃
v∈C

δ−
F⃗0
(v)

)
− c(S)

over all (α,C)-thin collections of hyper-links S which realize this table entry.
Traub and Zenklusen show how to compute the table entry T [C,B, T , ϕ, ψ] from previously

computed ones in polynomial time. At a high level, we will enumerate over all possible table
entries whose solutions can be combined to yield a solution to T [C,B, T , ϕ, ψ]. This is done by
guessing a partition of C into two neighboring cuts C1 and C2 from C′ (notice that there are at
most |V (H)| choices for this partition), and choices of B1 and B2 which are compatible with each
other and also respect the (α,C)-thinness. In particular, we must have δB1(C1) = δB2(C2) and
|δB1∪B2(C)| ≤ α. Finally, we must have Ti, ϕi and ψi interact in such a way as to yield a solution
to T [C,B, T , ϕ, ψ] when their solutions are combined.

Suppose (C1, B1, T1, ϕ1, ψ1) and (C2, B2, T2, ϕ2, ψ2) are table entries such that C1 and C2 are
adjacent intervals, δB1(C1) = δB2(C2) and |δB1∪B2(C1 ∪ C2)| ≤ α. Then the merger of these table
entries is defined as (C,B, T , ϕ, ψ), where C = (C1 ∪ C2), B = δB1∪B2(C), and T , ϕ, and ψ are
defined as follows:

Consider the graph with vertex set B1 ∪ B2 where x and y are adjacent if either: x and y are
intersecting hyper-links, x and y are in B1 and in the same set in the partition T1, or x and y are
in B2 and in the same set of the partition T2. Then T is the partition of B1 ∪ B2 corresponding
to the connected components of this graph. For any T ∈ T which by definition is equal to the
union of some parts (T 1

1 , T
1
2 , . . . , T

1
q1) from T1 and some parts (T 2

1 , T
2
2 , . . . , T

2
q2) from T2, define

ϕ(T ) = lca(ϕ1(T 1
1 ), . . . , ϕ1(T

1
q1), ϕ2(T

2
1 ), . . . , ϕ2(T

2
q2)). Finally, let ψ(T ) = 1 if there exists some T i

j

with ψi(Tj) = 1 and ϕi(T i
j ) = ϕ(T ). With this definition, if S1 is a set of hyper-links which realizes

(C1, B1, T1, ϕ1, ψ1) and S2 realizes (C2, B2, T2, ϕ2, ψ2), then S1 ∪ S2 realizes their merger.
Thus, to compute the optimal value for table entry T [C,B, T , ϕ, ψ], we can enumerate over pairs

(C1, B1, T1, ϕ1, ψ1) and (C2, B2, T2, ϕ2, ψ2) whose merger is (C,B, T , ϕ, ψ). Let π(C,B, T , ϕ, ψ)
denote the optimal value for this table entry. Then

π(C,B, T , ϕ, ψ) = max

{
π(Q1) + π(Q2) + c(B1 ∩B2) +

∑
u∈UQ1,Q2

c̃(δ−
F⃗0
(u)) :

Q1 = (C1, B1, T1, ϕ1, ψ1), and

Q2 = (C2, B2, T2, ϕ2, ψ2) have merger (C,B, T , ϕ, ψ)

}
,

where UQ1,Q2 = {ϕi(T ) : T ∈ Ti with ψi(T ) = 1 and ϕi(T ) ∈ Ci, for i = 1, 2} \ {
⋃

T∈T ϕ(T )}.
Furthermore, the optimal solution S to (C,B, T , ϕ, ψ) will be S1 ∪ S2 where S1 is the optimizer of
Q∗

1 and S2 is the optimizer of Q∗
2 for the best choice of Q∗

1 and Q∗
2 in the above maximization.

The overall solution to the problem will be found in some table entry with C = V (H)\ r. Since
the table has polynomially many entries, and each can be filled in polynomial time, this proves
Theorem 8.1.
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9 A (1.5 + ε)-approximation for k-SAG
In this section, we show how to use the local search framework introduced in [20] to give a (1.5+ε)-
approximation algorithm for SRAP, in the case that R = V (H). By the arguments in section 3,
this yields a (1.5 + ε) approximation algorithm for k-SAG. See Algorithm 2.

The algorithm begins by computing an arbitrary SRAP solution S. For each link f ∈ S, we will
construct a witness set Wf which initially consists of two directed links. In each iteration of the
algorithm, we add a collection of links to the solution along with their associated witness sets, and
drop directed links from other witness sets. If the witness set of a link f becomes empty then f is
removed from S. Throughout the algorithm, we maintain that F⃗ :=

⋃
f∈SWf is a feasible directed

solution. The algorithm terminates when there is no local move which substantially improves the
potential function.

We now define how the initial witness sets are constructed from our arbitrary starting solution
S. Suppose a link f is in a full component (U ′, S′), where U ⊆ V and S′ ⊆ S. Consider the eulerian
tour traversing each link in S′ exactly twice. This tour induces an ordering on the ring nodes in
U ′ ∩ V (H), say {a1, . . . , ak}. Suppose that f ∈ S′ is traversed on the Euler subpath from ai to
ai+1 and on the subpath from aj to aj+1 (where we take ak+1 := a1). Then the witness set Wf will
consist of the two directed links (ai, ai+1) and (aj , aj+1).

Note that F⃗ :=
⋃

f∈SWf is a feasible directed solution. We now update the directed links in the
witness sets by iteratively shortening links as long as F⃗ remains feasible. By Theorem 2.6 in [18],
at the end of this shortening process, F⃗ is an R-special directed solution.

Now, we define a potential function Φ defined on a solution S along with its witness sets.

Φ(S) :=
∑

f :|Wf |=1

c(f) +
3

2

∑
f :|Wf |=2

c(f).

We also define a weight function for the directed links in witness sets. For a directed link u in
some Wf , we define

c̄(u) :=
∑

f :u∈Wf

c(f)

|Wf |
.

Our algorithm then proceeds in step 6 by choosing an α-thin collection of hyper-links maximizing
c̄(dropF⃗ (Z)) − 1.5 · c(Z). The links in the full components corresponding to these hyper-links are
added to our solution S, while the directed links in dropF⃗ (Z) are removed from witness sets. Finally,
witness sets are constructed for the new undirected links which were added to the solution, and all
directed links in witness sets are shortened so that F⃗ becomes an R-special solution once more.

Remark 9.1. In part (iv) of step 6 of Algorithm 2, it is crucial that V (H) = R, since in this case,
any feasible directed solution can be iteratively shortened to obtain an R-special solution of at most
the cost. This does not hold if R ̸= V (H), see Figure 6.

Notice that Theorem 8.1 implies that the maximization step in step 6 of Algorithm 2 can be
performed in polynomial time. The following lemma, whose proof is identical to Lemma 9.3 in [18],
shows that the algorithm will terminate after polynomially many iterations. Let OPT denote the
cost of the optimal augmentation.
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Figure 6: An example of a SRAP instance on the left, where all three undirected links have cost 1.
The grey nodes are terminals. The completed instance is shown on the right, where the blue links
have cost 1 and the orange links have cost 2 (only the directed links are shown). The dashed blue
arcs form a feasible directed solution of cost 3, but there is no R-special solution of cost at most 3.

Lemma 9.2. Algorithm 2 runs for at most

ln
(1.5 · c(S)

OPT

)
· 6|R|
ε

iterations where S is the initial SRAP solution.

Finally, the solution returned has cost at most (1.5 + ε)OPT.

Lemma 9.3. At the end of Algorithm 2, we have c(S) ≤ (1.5 + ε)OPT.

The proof of the above lemma uses the same potential function analysis which is has been used
in [17][18][20], so we do not reproduce it again here. These yield the main result of this section:

Theorem 9.4. Algorithm 2 is a (1.5 + ε)-approximation algorithm for SRAP when R = V (H).

Corollary 9.5. There is a polynomial time (1.5 + ε)-approximation algorithm for k-SAG.
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