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Abstract. We introduce and study a directed analogue of the weighted Tree Augmentation Problem (WTAP). In the
weighted Directed Tree Augmentation Problem (WDTAP), we are given an oriented tree 𝑇 = (𝑉, 𝐴) and a set of directed
links 𝐿 ⊆ 𝑉 × 𝑉 with positive costs. The goal is to select a minimum cost set of links which enters each fundamental dicut
of 𝑇 (cuts with one leaving and no entering tree arc). WDTAP captures the problem of covering a cross-free set family with
directed links. It can also be used to solve weighted multi 2-TAP, in which we must cover the edges of an undirected tree
at least twice. WDTAP can be approximated to within a factor of 2 using standard techniques. We provide an improved
(1.75 + 𝜀)-approximation algorithm for WDTAP in the case where the links have bounded costs, a setting that has received
significant attention for WTAP. To obtain this result, we discover a class of instances, called “willows”, for which the natural
set covering LP is an integral formulation. We further introduce the notion of “visibly 𝑘-wide” instances which can be
solved exactly using dynamic programming. Finally, we show how to leverage these tractable cases to obtain an improved
approximation ratio via an elaborate structural analysis of the tree.

1 Introduction The design of networks that are resilient to connection failures constitutes a fundamental task in
combinatorial optimization. An important class of network design problems are network augmentation problems, in which
we are given a graph and a set of additional edges, called links, which we seek to add so that the resulting graph achieves
the desired connectivity properties. One of the most well-studied network augmentation problems is the Tree Augmentation
Problem (TAP). Given an undirected tree 𝑇 = (𝑉, 𝐸) and a set of links 𝐿 ⊆

(𝑉
2
)
, TAP asks for a minimum cardinality subset

of the links whose addition renders 𝑇 2-edge-connected. A solution to TAP must include a link crossing each fundamental
cut induced by the edges of 𝑇 . The fundamental cuts form a cross-free family1 and can be represented by a laminar set
family.

TAP can also be interpreted as a set covering problem on the edges of 𝑇 , where a link ℓ = {𝑢, 𝑣} covers every edge
on the unique 𝑢-𝑣-path in 𝑇 . As TAP is known to NP-hard and APX-hard [18], there has been a long line of research on
approximation algorithms for TAP [11, 20, 6, 7, 9, 4, 19], starting with a 2-approximation by Frederickson and JáJá [11] and
culminating in the best known approximation ratio of 1.393 [4]. There has further been a lot of research on the weighted
Tree Augmentation Problem (WTAP), where every link is equipped with a positive cost, and the task is to minimize the
total cost of the selected link set. Until a few years ago, no better approximation ratio than 2 was known. Recently, this
approximation barrier has been breached, resulting in the best known approximation ratio of 1.5 + 𝜀 [23, 24]. Prior to this,
several works have considered the bounded cost ratio case, where the ratio between the maximum and the minimum link
cost can be bounded by a constant [1, 10, 13]. In this setting, the best known approximation factor is 1.458 [13].

The Directed Tree Augmentation Problem In this paper, we introduce a directed variant of the tree augmentation
problem in which both the links and the underlying tree consist of directed arcs. Given an oriented tree 𝑇 = (𝑉, 𝐴) and an arc
𝑎 = (𝑢, 𝑣), we define the fundamental dicut associated with 𝑎 to be the vertex set 𝑈 of the weakly connected component of
𝑇 − 𝑎 containing 𝑢. We say that a link ℓ = (𝑥, 𝑦) covers the dicut 𝑈 if 𝑦 ∈ 𝑈, but 𝑥 ∉ 𝑈. In the Directed Tree Augmentation
Problem (DTAP), we are given an oriented tree 𝑇 = (𝑉, 𝐴) and a set of directed links 𝐿 ⊆ 𝑉 ×𝑉 , and the goal is to cover all
fundamental dicuts of 𝑇 using a minimum cardinality subset of 𝐿. Note that the fundamental dicuts of 𝑇 form a cross-free
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1A set family C ⊆ 2𝑉 is cross-free if for every 𝐴, 𝐵 ∈ C with 𝐴∩ 𝐵 ≠ ∅ and 𝐴∪ 𝐵 ≠ 𝑉 , we have 𝐴 ⊆ 𝐵 or 𝐵 ⊆ 𝐴.
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set family. In fact, using a result of Edmonds and Giles on tree-representations of cross-free families [8], DTAP captures the
problem of covering an arbitrary cross-free family with directed links. DTAP can also be seen as a covering problem on the
arcs of an oriented tree: a tree arc is covered by a directed link (𝑢, 𝑣) if the unique path from 𝑣 to 𝑢 in 𝑇 contains the tree arc
in the forward direction. See Figure 1.1 for an example.

Figure 1.1: A DTAP instance is shown on the left, with links drawn as dashed lines. A feasible solution is shown on the
right. Colors indicate the tree arcs that are covered by each link.

Interestingly, DTAP also captures some other natural set covering problems on the edges of a tree. Suppose 𝑇 = (𝑉, 𝐸)
is an undirected tree and a set of links is given. The (multi) 2-TAP problem is the problem of selecting a smallest multi-set
of links (meaning that we are allowed to select the same link twice) so that each tree edge 𝑒 ∈ 𝐸 is covered at least twice by
the links we select. The multi 2-TAP problem reduces to DTAP, see Subsection A.1.

DTAP can be shown to be NP-hard as well as APX-hard, using similar reductions as in [11, 18] for Strong Connectivity
Augmentation on oriented trees. For completeness, we give a hardness proof in Subsection A.2.

We further define the weighted Directed Tree Augmentation Problem (WDTAP), in which we are given a positive
cost for each link, and the task is to minimize the total cost of the selected link set. Like many problems in network
design, WDTAP admits a straightforward 2-approximation. To see this, note that WDTAP can be solved in polynomial
time when the underlying tree 𝑇 is an arborescence. Indeed, in this case the constraint matrix of the natural integer
programming formulation is a network matrix and hence totally unimodular. This tractable case can be leveraged to obtain a
2-approximation in general. First, choose an arbitrary root vertex 𝑟 . This partitions the arcs of the tree into up-arcs pointing
towards the root, and down-arcs pointing away from the root. Contracting the up-arcs and down-arcs, respectively, yields
two instances of WDTAP in which the oriented tree is a rooted arboresence. Thus, we can cover the up-arcs and down-arcs
separately, paying at most the cost of an optimum solution each. The union of these two solutions yields a 2-approximation.

The main result of this paper is a better-than-2 approximation for WDTAP in the case where the cost ratio of the instance,
the ratio between the maximum and the minimum cost of a link, is bounded.

Theorem 1.1. Let Δ ≥ 1 and let 𝜀 > 0. There exists a polynomial-time (1.75+𝜀)-approximation algorithm for WDTAP,
restricted to instances with cost ratio at most Δ.

Further related work Many network design problems exhibit a natural approximation barrier of 2. This is in part due
to a fundamental result of Jain [16] who gave a unified iterative rounding 2-approximation algorithm for the Survivable
Network Design Problem, which captures, e.g., the weighted Tree and Connectivity Augmentation Problem and their Steiner
variants [21, 14], the Steiner Forest Problem, and the (weighted) 𝑘-Edge-Connected Spanning Subgraph Problem. Jain’s
algorithm represented the best known approximation ratio for these problems for many decades, and only in recent years
we have seen several breakthroughs. As mentioned, the best ratio for WTAP, and in fact, also the weighted Connectivity
Augmentation Problem (WCAP) is now 1.5 + 𝜀 [24], and recent exciting progress on the Steiner forest has shown that a
better-than-2 approximation is possible there as well [2]. If the weights are uniform, both TAP and CAP can be approximated
to within a factor of 1.393 [4] while the 2-Edge-Connected Spanning Subgraph Problem admits a slightly better than 1.25-
approximation [3, 15]. The weighted 2-Edge-Connected Spanning Subgraph Problem remains at a factor of 2, even in the
bounded cost setting.

Directed network design problems are often more challenging to approximate. The Directed Steiner Tree Problem is
already set cover hard, see e.g. [5]. In terms of augmentation problems, the Strong Connectivity Augmentation Problem
(SCAP) is natural: we are given a weakly connected digraph which we seek to make strongly connected by adding directed
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links of cheapest cost. SCAP has seen little progress since Frederickson and Jájá proved that it admits a 2-approximation in
the 1980s [11]. It has been shown to be fixed parameter tractable with respect to the solution size [17]. Polyhedral results
due to Schrĳver [22] show that the linear program of finding a minimum cost strong augmentation of a given digraph 𝐷 is
integral when 𝐷 is source-sink connected, or when the available arcs are exactly the reverse arcs of those in 𝐷. There are
no known better-than-2 approximations for strongly connecting an oriented tree, even in the unweighted case.

Organization of the paper The remainder of this paper is organized as follows. In Section 2, we formally define WDTAP
and introduce basic notation which will be used throughout the paper. In Section 3, we briefly describe past works for WTAP
and how these approaches fail in our setting. In Section 4, we give an overview of our techniques to prove Theorem 1.1.
In Section 5, we define the class of “willows” for which the standard LP relaxation turns out to be integral. In Section 6,
we characterize instances that can be solved in polynomial time via a standard dynamic programming approach. Sections 7
to 10 present our (1.75 + 𝜀)-approximation for WDTAP with bounded cost ratio and its analysis.

2 Preliminaries An instance of WDTAP consists of a directed tree 𝑇 = (𝑉, 𝐴), and directed links 𝐿 ⊆ 𝑉 × 𝑉 with
positive costs 𝑐 : 𝐿 → R>0. For ℓ = (𝑢, 𝑣) ∈ 𝐿, we denote the unique 𝑢-𝑣-path in 𝑇 by 𝑃ℓ . The (directed) coverage −−→cov(ℓ)
consists of all backward arcs on 𝑃ℓ . To be consistent with the literature on (undirected) tree augmentation, we use cov(ℓ)
to denote the set of all arcs on 𝑃ℓ . However, we point out that in the context of WDTAP, a link ℓ only covers the arcs in
−−→cov(ℓ), as opposed to all arcs in cov(ℓ). Finally, we write←−−cov(ℓ) B cov(ℓ) \ −−→cov(ℓ) to denote the set of arcs on 𝑃ℓ that ℓ
“covers in the wrong direction”. A set of links 𝐹 ⊆ 𝐿 is feasible if every tree arc in 𝐴 is covered by some link in 𝐹, i.e.,
𝐴 ⊆ ⋃

ℓ∈𝐹
−−→cov(ℓ). WDTAP asks for a feasible link set of minimum cost 𝑐(𝐹) :=

∑
ℓ∈𝐹 𝑐(ℓ). For convenience, given an

instance of (𝑇 = (𝑉, 𝐴), 𝐿, 𝑐) of WDTAP, we will fix a vertex 𝑟 ∈ 𝑉 and call it the root. We will call the tuple (𝑇, 𝐿, 𝑐, 𝑟)
a rooted instance of WDTAP. For 𝑣 ∈ 𝑉 , we write 𝑇𝑣 = (𝑈𝑣 , 𝐴𝑣) to denote the subtree rooted at 𝑣. We call arcs that are
pointing towards/away from the root up-arcs and down-arcs, respectively, and we write 𝐴 = 𝐴𝑢𝑝 ¤∪𝐴𝑑𝑜𝑤𝑛 to denote the
partition into up- and down-arcs. For a link ℓ = (𝑢, 𝑣), we define the apex of ℓ to be apex(ℓ) B lca(𝑢, 𝑣) (where lca(𝑢, 𝑣)
denotes the least common ancestor of 𝑢 and 𝑣, the vertex on 𝑃ℓ closest to the root). Note that a link ℓ = (𝑢, 𝑣) covers the
up-arcs along the 𝑣-apex(ℓ)-path in 𝑇 , and the down-arcs along the 𝑢-apex(ℓ)-path in 𝑇 . We call a link of the form ℓ = (𝑢, 𝑣)
with 𝑣 = apex(ℓ) (𝑢 = apex(ℓ)) an up-link (down-link). A shadow of a link ℓ = (𝑢, 𝑣) is a link of the form ℓ′ = (𝑢′, 𝑣′),
where 𝑢′ and 𝑣′ appear in this order on 𝑃ℓ . We may assume without loss of generality that the WDTAP instances we are
working with are shadow-complete: this means that for every ℓ ∈ 𝐿, 𝐿 contains every possible shadow ℓ′ of ℓ and moreover,
𝑐(ℓ′) ≤ 𝑐(ℓ). Note that unlike the undirected setting where a link ℓ covers all edges on the tree path connecting its endpoints,
and, in particular, every shadow has a strictly smaller coverage, this is no longer true in the directed case. For this reason, we
define the generic shadow 𝑠(ℓ) of a link ℓ as the minimal shadow of ℓ with −−→cov(𝑠(ℓ)) = −−→cov(ℓ) and let 𝑃ℓ B 𝑃𝑠 (ℓ ) . Given a
feasible solution to a WDTAP instance, we may always replace each link by its generic shadow without increasing costs or
destroying feasibility.

The cost ratio of a WDTAP instance is defined as Δ =
maxℓ∈𝐿 𝑐 (ℓ )
minℓ∈𝐿 𝑐 (ℓ ) .

The arc-link-coverage matrix of an instance of WDTAP is the matrix 𝑀 ∈ {0, 1}𝐴×𝐿 with 𝑀𝑎,ℓ = 1 if and only if
𝑎 ∈ −−→cov(ℓ). For subsets 𝐵 ⊆ 𝐴 and 𝐿′ ⊆ 𝐿, we denote by 𝑀 [𝐵, 𝐿′] the submatrix of 𝑀 with rows indexed by 𝐵 and columns
indexed by 𝐿′. Obtaining an optimum solution to WDTAP is equivalent to finding an optimum integral solution to the linear
program (2.1).

(2.1) min

{∑︁
ℓ∈𝐿

𝑐(ℓ) · 𝑥ℓ : 𝑀 · 𝑥 ≥ 1, 𝑥 ≥ 0

}
.

3 Comparison with previous work

3.1 A decomposition-based approach for WTAP with bounded cost ratio . . . In order to provide intuition for our
algorithm, it is instructive to first describe some of the ideas that are used in [1, 10, 13] to obtain better-than-2-approximations
for WTAP with bounded cost ratio2. The overall approach pursued in these works consists of two main steps:

1. Design an 𝛼-approximation algorithm for a certain class of well-structured instances.

2. Decompose a general instance into subinstances from this class such that 𝛼-approximate solutions to the subinstances
can be combined to an (𝛼 + 𝜀)-approximate solution to the original instance.

2In doing so, we will mostly follow the description in [13], but provide a slightly modified perspective on certain arguments to make them align better
with the remainder of this paper.
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[13] consider the class of so-called 𝑘-wide instances, where 𝑘 ∈ N is a constant. A (rooted) instance of WTAP is
called 𝑘-wide if every subtree of a child of the root contains at most 𝑘 leaves. A 1.5-approximation for 𝑘-wide instances
can be obtained by trading off two different algorithms: after splitting all cross-links3 at their apex, a 𝑘-wide instance
decomposes into a union of independent instances with at most 𝑘 leaves each. These can be solved exactly using dynamic
programming [13]. On the other hand, after splitting every in-link into two up-links, the natural LP relaxation becomes
integral after adding so-called odd cut constraints [10].

The decomposition into 𝑘-wide instances is guided by a solution 𝑥 to a linear programming relaxation, which is used
to estimate the cost of splitting links to cut off subtrees as independent subinstances. More precisely, when saying that we
obtain the LP solution 𝑥′ from the LP solution 𝑥 by splitting a set of links 𝐿′ at a vertex 𝑣, we mean that 𝑥′ arises from 𝑥 by,
for every ℓ = {𝑢, 𝑤} ∈ 𝐿′ such that 𝑣 is an inner vertex of 𝑃ℓ , setting 𝑥′ (ℓ) = 0 and increasing the 𝑥′-value on each of the
two shadows {𝑢, 𝑣} and {𝑣, 𝑤} by 𝑥(ℓ). The constant cost ratio ensures that up to a constant factor, costs are proportional
to 𝑥-values; if the total 𝑥-value only increases by an 𝜀-fraction, then the cost will also only increase by an O(𝜀)-fraction.
The first step of the decomposition procedure is to contract edges 𝑒 ∈ 𝐸 (𝑇) that are heavily covered [1], i.e., for which
𝑥({ℓ : 𝑒 ∈ cov(ℓ)}) ≥ 𝜁𝜀 B

2
𝜀
. These edges can be covered at cost 𝜀 · 𝑐(𝑥) [1]. In the second step of the decomposition

procedure, the tree is traversed from bottom to top and subtrees hanging off certain inner vertices are split off. More precisely,
an edge 𝑒 = {𝑣, 𝑤}, where 𝑤 is closer to the root, is called 𝜀-light4 if 𝑥({ℓ : 𝑒 ∈ cov(ℓ)}) ≤ 𝜀 · 𝑥({ℓ : cov(ℓ) ∩ 𝐸 (𝑇𝑣) ≠ ∅}),
i.e., if the total coverage of 𝑒 amounts to at most an 𝜀-fraction of the total coverage of 𝑇𝑣 . When disattaching the subtree
𝑇𝑣 , every link ℓ = {𝑢, 𝑤} that leaves 𝑇𝑣 is split at 𝑣 into two shadows, one whose coverage is contained in 𝑇𝑣 and one
whose coverage is contained in 𝑇 − 𝑇𝑣 . As every split link covers 𝑒, the splitting increases the total 𝑥-value by at most
𝑥({ℓ : 𝑒 ∈ cov(ℓ)}). These costs can be charged to the total 𝑥-value within the subtree𝑇𝑣 that is subsequently cut off, ensuring
that the iterated splitting only increases the total cost by an O(𝜀)-fraction. At the end of the splitting, every subinstance is
𝑘 𝜀 B 2 · 𝜀−1 · 𝜁𝜀-wide. To see this, let 𝑤 be the root of a subinstance and let 𝑇𝑣 be a subtree hanging off the root. If there are
more than 𝑘 𝜀 leaves in the subtree, then 𝑥({ℓ : cov(ℓ) ∩ 𝐸 (𝑇𝑣) ≠ ∅}) > 𝑘𝜀

2 because every link can cover the edges incident
to at most two leaves. On the other hand, 𝑥({ℓ : {𝑣, 𝑤} ∈ cov(ℓ)}) < 𝜁𝜀 because all heavily covered edges were contracted,
implying that {𝑣, 𝑤} is 𝜀-light. But this means that 𝑇𝑣 would have been cut off, a contradiction.

3.2 . . . and why it doesn’t work for DTAP Given the similarities between WTAP and WDTAP, it appears tempting
to transfer the ideas described in Subsection 3.1 from the undirected to the directed setting. In this section, we point out
the issues with this approach, before discussing how to resolve them in the following sections. Recall that in order to
decompose a WTAP instance (with bounded cost ratio) into 𝑘-wide subinstances, while only increasing the total cost by an
O(𝜀)-fraction, we had to ensure two properties: first of all, we argued that subtrees with many leaves attract a large LP value.
More precisely, we observed that whenever a subtree 𝑇𝑣 hanging off the edge 𝑒 = {𝑣, 𝑤} contains more than 𝑘 𝜀 leaves, then
𝑥({ℓ : cov(ℓ) ∩ 𝐸 (𝑇𝑣) ≠ ∅}), the total LP value on links covering edges within the subtree, is large. Second of all, we had
to make sure that 𝑥({ℓ : 𝑒 ∈ cov(ℓ)}), the total LP value of links covering the edge 𝑒, is comparably small. Note that the
links covering 𝑒 are precisely the links one has to duplicate to split off the subtree 𝑇𝑣 as an independent instance. Hence,
combining both properties ensures that the total cost increase incurred by splitting links only amounts to an O(𝜀)-fraction
of the optimum cost.

The first property can also be easily ensured in the directed setting. Let 𝑎 = (𝑣, 𝑤) be an up-arc (down-arcs can be
handled analogously) and assume that 𝑇𝑣 contains more than 𝑘 leaves. Again, each link ℓ can cover the arcs incident to at
most two leaves; more precisely, −−→cov(ℓ) contains at most one up- and at most one down-arc incident to a leaf. Hence, any
solution 𝑥 to the natural LP relaxation (2.1) will satisfy 𝑥({ℓ : −−→cov(ℓ) ∩ 𝐴(𝑇𝑣) ≠ ∅}) ≥ 𝑘

2 . A problem arises, however, with
the second condition. In the undirected setting, every link ℓ with 𝑒 ∈ 𝐸 (𝑃ℓ) covers the edge 𝑒. This property can be used to
ensure that 𝑥({ℓ : 𝑒 ∈ cov(ℓ)}) is not too large by covering all heavily covered edges at an O(𝜀)-fraction of the LP cost and
then contracting them. In contrast, in the directed setting, this reasoning can only be used to guarantee that no arc is heavily
covered in the right direction, i.e., that 𝑥({ℓ : 𝑎 ∈ −−→cov(ℓ)}) is not too large. However, we cannot control whether an arc is
heavily covered in the wrong direction, i.e., whether 𝑥({ℓ : 𝑎 ∈ ←−−cov(ℓ)}) is large. But in order to fully cut off 𝑇𝑣 , we need to
be able to bound 𝑥({ℓ : 𝑎 ∈ cov(ℓ)}) = 𝑥({ℓ : 𝑎 ∈ −−→cov(ℓ)}) + 𝑥({ℓ : 𝑎 ∈ ←−−cov(ℓ)}). Figure 3.1 illustrates an example where
we cannot cut off a subtree, even though it contains more than 𝑘 leaves.

The reader might wonder why we are focusing on the techniques used in [1, 10, 13] that yield better-than-2-approximations
for WTAP with bounded cost ratio, and do not consider the more recent works [23, 24] that give better-than-2-approximations

3In the undirected setting, a link is called an up-link if its apex coincides with one of its endpoints. A cross-link is a link whose apex is the root that is
not an up-link. All links that are neither up- nor cross-links are called in-links.

4This term was introduced in [13]. Their definition (slightly) differs from the one presented here because they do not work with a rooted tree.
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Figure 3.1: An instance of WDTAP, with arcs indicated by solid arrows and links shown as dashed arrows. A solution to
(2.1) is indicated next to the links. All links have cost 1. The subtree hanging off the vertex 𝑣 contains a large number 𝑝 of
leaves that are connected to 𝑣 via up-arcs. In the given LP solution, these up-arcs are (partially) covered by the orange links,
each of which covers the down-arc entering 𝑣 in the wrong direction. Splitting all of the orange links at 𝑣 is too expensive.

for (general) WTAP. The reason for this is that the techniques in [23, 24] crucially rely on certain structural properties of
undirected solutions, such as the fact that the coverage of a link is connected. As such, it is unclear how to apply them in the
directed setting.

4 Our contribution The main result of this paper is a polynomial-time better-than-2-approximation for WDTAP with
bounded cost ratio.

Theorem 1.1. Let Δ ≥ 1 and let 𝜀 > 0. There exists a polynomial-time (1.75+𝜀)-approximation algorithm for WDTAP,
restricted to instances with cost ratio at most Δ.

Our approach towards Theorem 1.1 is inspired by the decomposition strategy pursued in [1, 10, 13] to obtain better-than-
2-approximations for WTAP with bounded cost ratio. However, as we discussed in the previous section, WDTAP exhibits
fundamental differences to its undirected analogue, which renders a simple adaptation of prior techniques infeasible. Instead
of completely decomposing the instance, our approach relies on partially decomposing the instance by splitting certain links
in such a way that the total cost only increases by an O(𝜀)-fraction. Our main technical contributions can be summarized as
follows:

• We introduce the concept of bounded visible width, which allows us to characterize when an instance of WDTAP can
be solved in polynomial time using a standard dynamic programming approach.

• We define a new class of instances called willows and show that for these instances, the natural LP relaxation (2.1) is
integral.

• We discuss how to carefully split certain links to achieve strong structural properties, while only incurring an arbitrary
small increase in the total solution cost. Then, we explain how splitting certain subsets of the links results in instances
of bounded visible width and willows, respectively, both of which we can solve exactly. Trading off three different
solutions results in the final approximation guarantee.

4.1 New notions of partial decomposition: visible width and willows In this section, we introduce the concepts
of visible width and up- and down-independence, which allow us to characterize the structural properties that we gain by
splitting links, and to leverage these to solve certain types of instances exactly.

Visible width The notion of constant visible width characterizes WDTAP instances that can be solved exactly using a
natural dynamic programming approach, similar to the one used for 𝑘-wide instances [13]. The basic idea is to traverse the
tree from the leaves to the root and to iteratively construct a cheapest solution covering the subtree𝑇𝑣 , given a fixed “interface”
to the remaining instance. More precisely, for 𝑣 ∈ 𝑉 , let 𝐿𝑣 be the set of links ℓ such that 𝑣 is an inner vertex of 𝑃ℓ . We further
partition 𝐿𝑣 into the set 𝐿𝑐𝑟𝑜𝑠𝑠

𝑣 of 𝑣-cross-links having 𝑣 as their apex, the set 𝐿↓𝑣 B {ℓ = (𝑢, 𝑤) ∈ 𝐿𝑣 : 𝑢 ∉ 𝑈𝑣∧𝑤 ∈ 𝑈𝑣 \{𝑣}}
of links pointing into and the set 𝐿↑𝑣 B {ℓ = (𝑢, 𝑤) ∈ 𝐿𝑣 : 𝑢 ∈ 𝑈𝑣 \ {𝑣} ∧ 𝑤 ∉ 𝑈𝑣} of links pointing out of 𝑇𝑣 . Note
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that the links in 𝐿𝑐𝑟𝑜𝑠𝑠
𝑣 are precisely those that connect the solutions in different subtrees of 𝑇𝑣 hanging off 𝑣, while the

links in 𝐿
↑
𝑣 ∪ 𝐿

↓
𝑣 are precisely those creating interactions between 𝑇𝑣 and 𝑇 − 𝑇𝑣 . In order to obtain an optimum WDTAP

solution, it suffices to, for 𝑣 ∈ 𝑉 and 𝐹 ⊆ 𝐿
↑
𝑣 ∪ 𝐿

↓
𝑣 , compute a cheapest solution 𝑆(𝑣, 𝐹) ⊆ 𝐿 for (𝑇𝑣 , 𝐿, 𝑐) with the property

that 𝑆(𝑣, 𝐹) ∩ (𝐿↑𝑣 ∪ 𝐿
↓
𝑣) = 𝐹. Then 𝑆(𝑟, ∅) constitutes an optimum solution to (𝑇, 𝐿, 𝑐). Of course, the problem with

this approach is that in general, there are exponentially many choices for the set 𝐹 and moreover, we need to be able to
control the number of 𝑣-cross-links used in a solution in order to merge solutions for the children of 𝑣 into a solution for 𝑣
efficiently. Hence, our goal is to characterize instances for which we can guarantee the existence of an optimum solution 𝑆

such that |𝑆 ∩ 𝐿𝑣 | can be bounded by a constant for every 𝑣 ∈ 𝑉 ; such a solution can be found in polynomial time using the
above-mentioned DP approach. To this end, consider a shadow-minimal optimum solution 𝑆∗, i.e., an optimum solution in
which no link can be replaced by a proper shadow whilst maintaining feasibility. It is not hard to see that every ℓ ∈ 𝑆∗ covers
the first and the last arc of 𝑃ℓ and moreover, it is the unique link in 𝑆∗ that does so. This implies that the lowest up-arcs in 𝑇𝑣
covered by links in (𝐿↓𝑣 ∪ 𝐿𝑐𝑟𝑜𝑠𝑠

𝑣 ) ∩ 𝑆∗ are pairwise distinct and form an ancestor-free set of up-arcs, i.e., for two arcs 𝑎 ≠ 𝑎′

in this set, 𝑎′ does not appear on the path connecting the top vertex of 𝑎 to the root. Similarly, the lowest down-arcs in 𝑇𝑣

covered by links (𝐿↑𝑣 ∪ 𝐿𝑐𝑟𝑜𝑠𝑠
𝑣 ) ∩ 𝑆∗ form an ancestor-free set of down-arcs. Motivated by these observations, we say that

a vertex 𝑣 can see an up-arc (a down-arc) 𝑎 ∈ 𝐴𝑣 if there exists a link ℓ ∈ 𝐿
↓
𝑣 ∪ 𝐿𝑐𝑟𝑜𝑠𝑠

𝑣 (ℓ ∈ 𝐿
↑
𝑣 ∪ 𝐿𝑐𝑟𝑜𝑠𝑠

𝑣 ) with 𝑎 ∈ −−→cov(ℓ).
Equivalently, 𝑣 can see an arc 𝑎 ∈ 𝐴𝑣 if there is a link ℓ with 𝑎 ∈ −−→cov(ℓ) (i.e., ℓ covers 𝑎) such that 𝑣 is an inner vertex
of 𝑃ℓ . We define the visible up-width (visible down-width) at 𝑣 to be the maximum size of an ancestor-free set of up-arcs
(down-arcs) that 𝑣 can see. The visible width of an instance is the maximum over the visible up- and down-widths at the
vertices. The previous considerations imply that WDTAP instances with constant visible width can be solved exactly in
polynomial time via dynamic programming.

𝑟

𝑣

𝑥 𝑦

Figure 4.1: The visible width at 𝑣 is at least 4, as certified by the four orange-shaded arcs in its subtree. This is an ancestor-free
set of down-arcs which are all visible to 𝑣. However, the black down-arc incident to 𝑥, as well as the down-arc above, are not
visible to 𝑣 since they are not covered by a link ℓ for which 𝑣 is an inner vertex of 𝑃ℓ . The down-arc incident to 𝑦 is visible
to 𝑣, but does not form an ancestor-free set with the shaded down-arc above.

Note that the visible width of an instance depends both on the rooted tree as well as the set of links that we are allowed
to select. During the course of our algorithm, we will maintain a solution 𝑥 to (2.1) and we will always compute the visible
width with respect to the support of 𝑥 (and its shadows). In particular, modifying 𝑥 by splitting links can block a vertex from
seeing certain arcs in its subtree and decrease the visible width.

Willows For WTAP, [10] have shown that if the instance only contains cross-links and up-links, then the constraint
matrix of the natural LP relaxation is a binet matrix, which they use to argue that adding odd cut constraints suffices to
guarantee integrality. For WDTAP, it is not hard to see that if the instance only contains cross-links and up- and down-links,
then the constraint matrix of (2.1) is totally unimodular. We generalize this result by introducing willows, a class of instances
that may contain cross-links with respect to multiple “local roots”.

Let (𝑇, 𝐿, 𝑐, 𝑟) be a rooted WDTAP instance. We call a vertex 𝑣 ∈ 𝑉 (𝑇) up-independent (down-independent) if 𝐿↓𝑣 = ∅
(𝐿↑𝑣 = ∅). If 𝑣 is up-independent (down-independent), then the problem of covering the up-arcs (down-arcs) in 𝑇𝑣 is
“independent from” the problem of covering arcs outside 𝑇𝑣 in the sense that no link can cover both. We call (𝑇, 𝐿, 𝑐, 𝑟) a
willow if there exists a set 𝑊 ⊆ 𝑉 (𝑇) such that every vertex in 𝑊 is up- or down-independent, and every link in 𝐿 is either
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an up-link, a down-link, or a 𝑊-cross-link, meaning that its apex is contained in 𝑊 . Note that the root 𝑟 is always both up-
and down-independent.

Theorem 4.1. Let (𝑇, 𝐿, 𝑐, 𝑟) be a willow. Then (2.1) is integral.

𝑟

𝑢 𝑣

Figure 4.2: A willow (choosing 𝑊 = {𝑟, 𝑢, 𝑣}). Notice that 𝑢 is down-independent, 𝑣 is up-independent, and the root 𝑟 is
both. All links are either up-links, down-links, or have their apex in 𝑊 .

4.2 Our approach
Blue-sky version To provide some intuition how the notions of visible width and willows can be leveraged towards a

better-than-2-approximation for WDTAP with bounded cost ratio, assume for a moment that we could prove the following
“dream theorem”.

Dream Theorem. Let 𝜀 > 0 and 𝑥 a solution to (2.1). We can, in polynomial time, compute a solution 𝑥∗ to (2.1) of cost
𝑐(𝑥∗) ≤ (1 + 𝜀) · 𝑐(𝑥) that arises from 𝑥 by splitting links, and a set 𝑊 ⊆ 𝑉 such that:

(i) 𝑊 consists of up- and down-independent vertices with respect to supp(𝑥∗) = {ℓ ∈ 𝐿 : 𝑥∗ (ℓ) > 0}.

(ii) Let 𝐿′ arise from supp(𝑥∗) by splitting every 𝑊-cross-link at its apex. Then (𝑇, 𝐿′) has visible width at most 𝑘 (𝜀,Δ)
(where 𝑘 (𝜀,Δ) is some constant depending on 𝜀 and the cost ratio Δ of the instance).

Using the dream theorem, we could obtain a (1.5 + O(𝜀))-approximation for WDTAP with bounded cost ratio as follows:
first apply the dream theorem to compute 𝑥∗ and𝑊 subject to (i)-(ii). Let 𝐿∗𝑐𝑟𝑜𝑠𝑠 denote the set of𝑊-cross-links in supp(𝑥∗).
By splitting all links in supp(𝑥∗) \ 𝐿∗𝑐𝑟𝑜𝑠𝑠 that are neither up- nor down-links at their apex, we obtain a willow. Hence, we
can compute a solution of cost at most 𝑐(𝑥∗) + ∑ℓ∈𝐿∗𝑐𝑟𝑜𝑠𝑠 𝑐(ℓ) · 𝑥

∗ (ℓ) by Theorem 4.1. By splitting all links in 𝐿∗𝑐𝑟𝑜𝑠𝑠 at
their apex, we obtain an instance of visible width at most 𝑘 (𝜀,Δ) by (ii), which we can solve optimally. If we could argue
that this solution costs at most 𝑐(𝑥∗) +∑ℓ∈𝐿\𝐿∗𝑐𝑟𝑜𝑠𝑠 𝑐(ℓ) · 𝑥

∗ (ℓ), then taking the best of the two solutions gives a solution of
cost at most 1.5 · 𝑐(𝑥∗) ≤ 1.5 · (1 + 𝜀) · 𝑐(𝑥). There is the slight issue that the optimum solution found by the DP might be
more expensive than the LP “suggests”. To remedy this, we can embed our algorithm into the partial separation framework
from [1] that has also been used in [13] to obtain a solution with the appropriate cost relative to the LP (see Section 7 for
the details). In each step, our partial separation oracle will either find a (1.75 + O(𝜀))-approximate solution, or a violated
visibly 𝑘-wide modification inequality. Visibly 𝑘-wide modification inequalities are valid constraints for the integer hull of
(2.1) that, loosely speaking, enforce that our LP solution is not “too cheap” on “subinstances” of visible width at most 𝑘 .
See Definition 7.11 for a formal definition.

Coming down to earth The problem with the blue-sky approach is that the dream theorem is not true, essentially due to
the issue with heavy coverage in the “wrong direction” outlined in Subsection 3.2. However, we can prove a weaker version
of the dream theorem that tells us that heavy coverage in the wrong direction is, in fact, the only issue that we have to handle.

Given 𝜀 > 0, we fix constants 𝜁1 ≪ 𝜁2 ≪ 𝑘 (see Section 8 for the precise values). 𝜁1 and 𝜁2 will be thresholds for
considering an arc to be heavily covered in the “right” and “wrong direction”, respectively. 𝑘 will be the bound on the visible
width of instances that we aim for. In the following, we describe our partial separation oracle, that, given a solution 𝑥 to (2.1),
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either finds a violated visibly 𝑘-wide modification inequality, or a solution of cost at most (1+𝜀)2 ·1.75 · 𝑐(𝑥). As a first step,
similar to the outline in Subsection 3.1, we will contract every arc 𝑎 that is 𝜁1-covered, i.e., satisfies 𝑥({ℓ : 𝑎 ∈ −−→cov(ℓ)}) ≥ 𝜁1.
For 𝜁1 chosen large enough, these can be covered at a total cost of 𝜀 · 𝑐(𝑥). Hence, we may assume in the following that
there are no 𝜁1-covered arcs. We further call an arc 𝑎 𝜁2-heavy if 𝑥({ℓ : 𝑎 ∈ ←−−cov(ℓ)}) ≥ 𝜁2. Finally, for 𝑣 ∈ 𝑉 \ {𝑟}, let 𝑎𝑣
be the first arc on the 𝑣-𝑟-path in 𝑇 . We are now ready to state our weaker version of the dream theorem:

Theorem 4.2. Let 𝜀 > 0 and 𝑥 a solution to (2.1). We can, in polynomial time, compute a solution 𝑥∗ to (2.1) of cost
𝑐(𝑥∗) ≤ (1 + 𝜀) · 𝑐(𝑥) that arises from 𝑥 by splitting links, and a set 𝑊 ⊆ 𝑉 such that:

(i) 𝑊 consists of up- and down-independent vertices with respect to supp(𝑥∗) = {ℓ ∈ 𝐿 : 𝑥∗ (ℓ) > 0}.

(ii) Let 𝐿′ arise from supp(𝑥∗) by splitting every 𝑊-cross-link at its apex.

(a) The visible width at 𝑟, as well as at every 𝑣 ∈ 𝑉 \ {𝑟} for which 𝑎𝑣 is not 𝜁2-heavy, is at most 𝑘 .
(b) For every 𝑣 ∈ 𝑉 \ {𝑟} such that 𝑎𝑣 is a 𝜁2-heavy up-arc (down-arc), the visible up-width (down-width) at 𝑣 is at

most 𝑘 .

𝑟

𝑏 𝑎

𝑐 𝑒 𝑑

. . . . . . . . . . . . . . . . . .

𝑟

𝑏 𝑎

𝑐 𝑒 𝑑

. . . . . . . . . . . . . . . . . .

Figure 4.3: Illustration of Theorem 4.2. (Top) A DTAP instance and a solution 𝑥 to (2.1) whose support is shown as dashed
links. (Bottom) The resulting solution 𝑥∗ with 𝑊 = {𝑎, 𝑐, 𝑑, 𝑟}, where arcs 𝑎𝑒 and 𝑎𝑑 are 𝜁2-heavy (light blue). The links
contained in the support of 𝑥∗, but not in the support of 𝑥, are shown in purple. All vertices except 𝑎, 𝑐, 𝑑, 𝑒 have visible
width at most 𝑘 = 3. After splitting 𝑊-cross-links, 𝑎 and 𝑐 will have visible width 0, 𝑑 will have visible up-width 0 and 𝑒

will have visible down-width 0.

In the following, we will sketch how to prove the weakened dream theorem using ideas similar to the decomposition
approach used for WTAP. The heavy lifting happens in Subsection 4.3, where we explain how to handle heavy arcs and
leverage the weakened dream theorem to obtain the desired approximation guarantee.

Proving Theorem 4.2 Our strategy to prove Theorem 4.2 is similar to the decomposition approach for WTAP with
bounded cost ratio described in Subsection 3.1. However, instead of completely cutting off certain subtrees, we will
only split certain links covering light arcs. This requires a more intricate scheme to bound the cost of the splitting
and avoid “overcharging”. We fix a constant 𝛾 ∼ 𝜀. For 𝑣 ∈ 𝑉 \ {𝑟}, we say that the arc 𝑎𝑣 is 𝛾-up-light if
𝑥(𝐿↓𝑣) ≤ 𝛾 · 𝑥({ℓ ∈ 𝐿 : ℓ covers an up-arc in 𝑇𝑣 that 𝑣 can see} \ 𝐿↓𝑣), where visibility is defined with respect to the support
of 𝑥. Analogously, we define the notion of 𝛾-down-light arcs by replacing 𝐿

↓
𝑣 by 𝐿

↑
𝑣 and “up-arc” by “down-arc”. We obtain
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an LP solution 𝑥∗ and a vertex set 𝑊 as stated in Theorem 4.2 as follows. We traverse 𝑉 \ {𝑟} in order of decreasing distance
to the root (i.e., from bottom to top). For 𝑣 ∈ 𝑉 \ {𝑟}, if 𝑎𝑣 is 𝛾-up-light, we split every link in 𝐿

↓
𝑣 at 𝑣 and add 𝑣 to 𝑊 .

Similarly, if 𝑎𝑣 is 𝛾-down-light, we split every link in 𝐿
↑
𝑣 at 𝑣 and add 𝑣 to 𝑊 . Finally, add 𝑟 to 𝑊 . By construction, every

vertex in𝑊 is up- or down-independent. To bound the total cost increase by O(𝜀) · 𝑐(𝑥), we observe that if ℓ ∈ 𝐿 \ 𝐿↓𝑣 covers
an up-arc in 𝑇𝑣 , then ℓ only covers arcs within 𝑇𝑣; otherwise, we had ℓ ∈ 𝐿↓𝑣 . When splitting all links in 𝐿

↓
𝑣 at 𝑣, every up-arc

in 𝑇𝑣 becomes invisible to every vertex outside 𝑇𝑣 . Hence, 𝑥(ℓ) will be “charged against” for splitting at a 𝛾-up-light arc at
most once, and the same reasoning applies for 𝛾-down-light arcs. Hence, 𝛾 ∼ 𝜀 yields the desired cost bound. Finally, we
sketch how to derive (ii). We will only explain how to bound the visible up-width at every vertex; the visible-down width
can be handled analogously. As 𝑟 ∈ 𝑊 , the visible (up)-width at 𝑟 is 0 after splitting all 𝑊-cross-links at their apex. Next,
let 𝑣 ∈ 𝑉 \ {𝑟} and assume that the visible up-width at 𝑣 is greater than 𝑘 . This means that there is an ancestor-free set 𝐴′
of at least 𝑘 + 1 up-arcs in 𝑇𝑣 that are all visible from 𝑣. Given that no link can cover two up-arcs from an ancestor-free
set simultaneously, this implies 𝑥({ℓ ∈ 𝐿 : ℓ covers an up-arc in 𝑇𝑣 that 𝑣 can see}) > 𝑘 holds at the end of the splitting
procedure and by the order in which vertices are considered, it also holds when we look at 𝑣. If 𝑥(𝐿↓𝑣) < 𝜁2, then by our
choice of constants, 𝑎𝑣 is 𝛾-up-light. Hence, every link in 𝐿

↓
𝑣 is split at 𝑣, 𝑣 ∈ 𝑊 and after splitting all 𝑊-cross-links at their

apex, the visible up-width at 𝑣 is 0 < 𝑘 , a contradiction. So we must have 𝑥(𝐿↓𝑣) ≥ 𝜁2 > 𝜁1. Note that if 𝑎𝑣 is an up-arc,
then 𝑎𝑣 ∈ −−→cov(ℓ) for every ℓ ∈ 𝐿

↓
𝑣; otherwise 𝑎𝑣 ∈ ←−−cov(ℓ) for every ℓ ∈ 𝐿

↓
𝑣 . As we contracted all 𝜁1-covered arcs, 𝑎𝑣 must

be a down-arc that is 𝜁2-heavy.

4.3 Components and cores: handling coverage in the wrong direction
An instructive special case To explain how we handle 𝜁2-heavy arcs, it is helpful to first consider the slightly artificial,

but instructive special case in which for every 𝜁2-heavy arc 𝑎𝑣 , the parent arc (if exists) is oppositely oriented. More precisely,
we assume that if 𝑎𝑣 = (𝑣, 𝑤) is a 𝜁2-heavy up-arc and 𝑤 ≠ 𝑟 , then 𝑎𝑤 is a down-arc, and if 𝑎𝑣 = (𝑤, 𝑣) is a 𝜁2-heavy
down-arc and 𝑤 ≠ 𝑟,then 𝑎𝑤 is an up-arc. In this situation, we can again obtain a (1.5 + O(𝜀))-approximation using the
following result:

Theorem 4.3. We can, in polynomial time, compute a solution 𝑥∗∗ to (2.1) of cost 𝑐(𝑥∗∗) ≤ (1 + 𝜀) · 𝑐(𝑥∗) that arises
from 𝑥∗ by splitting links, and 𝑋 ⊆ 𝑉 such that:

(i) 𝑋 consists of up- and down-independent vertices with respect to supp(𝑥∗∗) = {ℓ ∈ 𝐿 : 𝑥∗∗ (ℓ) > 0}.

(ii) Let 𝐿′ arise from supp(𝑥∗∗) by splitting every 𝑋-cross-link at its apex. For every 𝑣 ∈ 𝑉 \ {𝑟} such that 𝑎𝑣 is a 𝜁2-heavy
up-arc (down-arc), the visible down-width (up-width) of 𝑣 w.r.t. 𝐿′ is 0.

Before proving Theorem 4.3, let us first discuss how to leverage it to obtain the desired approximation guarantee. As
splitting links can only reduce the visible width, Theorem 4.2 (ii) and Theorem 4.3 (ii) tell us that after splitting every
(𝑊 ∪ 𝑋)-cross-link in supp(𝑥∗∗), we obtain an instance of visible width at most 𝑘 . On the other hand, as splitting links
cannot destroy up- or down-independence, Theorem 4.2 (i) and Theorem 4.3 (i) tell us that after splitting every link in
supp(𝑥∗∗) that is not a (𝑊 ∪ 𝑋)-cross-link at its apex, we obtain a willow. Hence, we may proceed as in Subsection 4.2 to
obtain a solution of cost (1.5 + O(𝜀)) · 𝑐(𝑥).

Proving Theorem 4.3 We obtain 𝑥∗∗ as follows: for 𝑣 ∈ 𝑉 \ {𝑟} such that 𝑎𝑣 = (𝑣, 𝑤) is a 𝜁2-heavy up-arc, we split
every link in 𝐿

↓
𝑣 at 𝑣 and every link in 𝐿

↑
𝑤 at 𝑤. We add 𝑣 and 𝑤 to 𝑋 . Similarly, for 𝑣 ∈ 𝑉 \ {𝑟} such that 𝑎𝑣 = (𝑤, 𝑣) is a

𝜁2-heavy down-arc, we split every link in 𝐿
↑
𝑣 at 𝑣 and every link in 𝐿

↓
𝑤 at 𝑤. Again, we add 𝑣 and 𝑤 to 𝑋 . Property (i) is

clear by construction. For property (ii), let w.l.o.g. 𝑣 ∈ 𝑉 \ {𝑟} such that 𝑎𝑣 = (𝑣, 𝑤) is a 𝜁2-heavy up-arc. Then 𝐿′ doesn’t
contain any 𝑣-cross-link. Moreover, every link in ℓ ∈ 𝐿

↑
𝑣 ∩ 𝐿′ has to end at 𝑤 because all 𝑤-cross-links and all links in 𝐿

↑
𝑤

were split at 𝑤. In particular, as the up-link 𝑎𝑣 is not covered by ℓ, 𝑣 is not an inner vertex of 𝑃ℓ . But this implies that 𝑣
cannot see any down-arc in 𝑇𝑣 . It remains to bound the cost of the splitting. Again, let 𝑣 ∈ 𝑉 \ {𝑟} such that 𝑎𝑣 = (𝑣, 𝑤)
is a 𝜁2-heavy up-arc. We know that 𝑥(𝐿↓𝑣) ≤ 𝑥({ℓ : 𝑎𝑣 ∈ −−→cov(ℓ)} < 𝜁1 because there are no 𝜁1-covered arcs. Similarly,
𝑥(𝐿↑𝑤) < 𝜁1 because if 𝑤 = 𝑟 , then 𝐿

↑
𝑤 = ∅, and otherwise, 𝑎𝑤 is a down-arc. On the other hand, 𝑥({ℓ : 𝑎𝑣 ∈ ←−−cov(ℓ)}) ≥ 𝜁2,

and {ℓ : 𝑎𝑣 ∈ ←−−cov(ℓ)} ⊆ {ℓ : 𝑎𝑤 ∈ −−→cov(ℓ)} ∪ {ℓ : apex(ℓ) = 𝑤}, if 𝑤 ≠ 𝑟 , and {ℓ : 𝑎𝑣 ∈ ←−−cov(ℓ)} ⊆ {ℓ : apex(ℓ) = 𝑤}
otherwise. This implies that 𝑥({ℓ : apex(ℓ) = 𝑤}) ≥ 𝜁2 − 𝜁1 because 𝑎𝑤 , if exists, is not 𝜁1-covered. Using 𝜁1 ≪ 𝜁2, we can
charge the splitting of the links in 𝐿

↓
𝑣 and 𝐿

↑
𝑤 against the total costs of the links with apex 𝑤.

The general case To handle the general case, we consider connected components of the (oriented) forests (𝑉, 𝐴𝑢𝑝) and
(𝑉, 𝐴𝑑𝑜𝑤𝑛), and define the core of a component to consist of all of the paths connecting 𝜁2-heavy arcs in the component to its
root. We denote the set of vertices and arcs that are contained in a core 𝐶 by 𝑉𝐶 and 𝐴𝐶 , respectively. Note that the special
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case we considered corresponds to the situation in which every core has depth 1. While the proof of Theorem 4.3 extends
to the case where every core has constant depth, this approach is too costly in general. Instead, we perform a more involved
trade-off between three different solutions, obtaining a solution of cost at most (1.75 + O(𝜀)) · 𝑐(𝑥), or a violated visibly
𝑘-wide modification inequality. To this end, we define 𝐿𝑐𝑟𝑜𝑠𝑠 to be the collection of all 𝑊 ∪𝑉𝐶 -cross-links, where 𝑊 is the
vertex set from Theorem 8.3. We define

−→
𝐿 B {ℓ : −−→cov(ℓ) ∩ 𝐴𝐶 ≠ ∅} and

←−
𝐿 B {ℓ : ←−−cov(ℓ) ∩ 𝐴𝐶 ≠ ∅} to be the sets of links

covering a core arc in the right or in the wrong direction, respectively. Via carefully designed splitting operations, that only
increase the total costs by an O(𝜀)-fraction, we can ensure useful structural properties, including

−→
𝐿 ∩←−𝐿 = ∅. Moreover, we

can establish the following three statements.

1. Splitting all links in
←−
𝐿 ∪ 𝐿𝑐𝑟𝑜𝑠𝑠 yields an instance of constant visible width.

2. Splitting all links in
←−
𝐿 and all links in 𝐿 \ 𝐿𝑐𝑟𝑜𝑠𝑠 at their apex yields a willow.

3. Splitting all links in 𝐿 \←−𝐿 at their apex and every link in
−→
𝐿 once more yields an instance corresponding to the disjoint

union of willows.

Taking an appropriate weighted average of these three solutions yields an approximation guarantee of 1.75 + O(𝜀).

5 Total unimodularity for willows Let (𝑇 = (𝑉, 𝐴), 𝐿, 𝑐, 𝑟) be a rooted WDTAP instance, and recall the linear
programming relaxation given in (2.1). This is not an integral formulation in general; see Subsection A.3. In this section,
we derive sufficient conditions for the incidence matrix 𝑀 to be totally unimodular, yielding an integral formulation and
allowing us to solve the corresponding WDTAP instance in polynomial time.

We begin by formally defining the notions of up- and down-independence and willows introduced in Section 4.

Definition 5.1. We say that 𝑣 ∈ 𝑉 is up-independent with respect to 𝐿′ ⊆ 𝐿 if for every ℓ ∈ 𝐿′, we have
−−→cov(ℓ) ∩ 𝐴𝑣 ∩ 𝐴𝑢𝑝 = ∅ or −−→cov(ℓ) ⊆ 𝐴𝑣 . We say that 𝑣 is down-independent with respect to 𝐿′ if for every ℓ ∈ 𝐿′,
we have −−→cov(ℓ) ∩ 𝐴𝑣 ∩ 𝐴𝑑𝑜𝑤𝑛 = ∅ or −−→cov(ℓ) ⊆ 𝐴𝑣 .

We recap the following definitions from Section 2 and Section 4. We call a link ℓ = (𝑢, 𝑣) an up-link if 𝑣 = apex(ℓ) and
a down-link if 𝑢 = apex(ℓ). For a set of vertices 𝑊 , we call ℓ a 𝑊-cross-link if apex(ℓ) ∈ 𝑊 and ℓ is neither an up- nor a
down-link.

Definition 5.2. We call a rooted WDTAP instance (𝑇, 𝐿, 𝑐, 𝑟) a willow if there is a vertex set 𝑊 ⊆ 𝑉 (𝑇) such that

• every vertex in 𝑊 is up- or down-independent with respect to 𝐿 and

• every link in 𝐿 is an up-link, a down-link or a 𝑊-cross-link.

Theorem 5.3 (unimodularity theorem). Let (𝑇, 𝐿, 𝑐, 𝑟) be a willow and let 𝑀 be its arc-link-coverage matrix. Then
𝑀 is totally unimodular. In particular, an optimum integral solution to (2.1) can be found in polynomial time.

For the proof, it is convenient to introduce the following additional notation: For an arc 𝑎, we call the endpoint of 𝑎 that
is closer to the root the apex of 𝑎 and denote it by apex(𝑎). Given two vertices 𝑢 and 𝑣 of 𝑇 , we write 𝑃𝑢𝑣 to denote the
𝑢-𝑣-path in 𝑇 .

Proof of Theorem 5.3. Let 𝑇 = (𝑉, 𝐴) and let 𝑊 be as in Definition 5.2. We may assume 𝑟 ∈ 𝑊 because 𝑟 is both up-
and down-independent. To establish total unimodularity of 𝑀 , we use the criterion by Ghouila-Houri [12]. It states that a
matrix 𝐴 ∈ {−1, 0, 1}𝑚×𝑛 is totally unimodular if and only if for every subset 𝑅 ⊆ {1, . . . , 𝑚} of the rows, there exists a
signing 𝜎 : 𝑅 → {−1, +1} such that for every column 𝑗 ∈ {1, . . . , 𝑛}, ∑𝑖∈𝑅 𝜎(𝑖) · 𝐴𝑖 𝑗 ∈ {−1, 0, 1}, where 𝐴𝑖 𝑗 denotes the
entry of 𝐴 in row 𝑖 and column 𝑗 .

Applying this to our setting where rows correspond to arcs and columns correspond to links, we need to prove that for
every 𝐵 ⊆ 𝐴, there exists a signing 𝜎 : 𝐵→ {−1, +1} such that

(5.1) for every ℓ ∈ 𝐿
∑︁

𝑎∈−→cov(ℓ )∩𝐵

𝜎(𝑎) ∈ {−1, 0, 1}.

For two vertices 𝑣 and 𝑤, we define dist𝑢𝑝 (𝑣, 𝑤) and dist𝑑𝑜𝑤𝑛 (𝑣, 𝑤) to be the number of up- and down-arcs from 𝐵 on
the 𝑣-𝑤-path in 𝑇 , respectively. To construct the signing, we define starting signs 𝜑𝑢𝑝 , 𝜑𝑑𝑜𝑤𝑛 : 𝑊 → {−1, +1} in order of
increasing distance (in all of 𝑇) to the root 𝑟 .
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• We set 𝜑𝑢𝑝 (𝑟) = +1 and 𝜑𝑑𝑜𝑤𝑛 (𝑟) = −1.

• Let 𝑢 ∈ 𝑊 be up-independent and let 𝑣 ∈ 𝑊 \ {𝑢} be the next vertex after 𝑢 on the 𝑢-𝑟-path in 𝑇 . We define
𝜑𝑑𝑜𝑤𝑛 (𝑢) B 𝜑𝑑𝑜𝑤𝑛 (𝑣) · (−1)dist𝑑𝑜𝑤𝑛 (𝑢,𝑣) and 𝜑𝑢𝑝 (𝑢) B −𝜑𝑑𝑜𝑤𝑛 (𝑢).

• Let 𝑢 ∈ 𝑊 be down-independent (but not up-independent) and let 𝑣 ∈ 𝑊 \ {𝑢} be the next vertex after 𝑢 on the 𝑢-𝑟-path
in 𝑇 . We define 𝜑𝑢𝑝 (𝑢) B 𝜑𝑢𝑝 (𝑣) · (−1)dist𝑢𝑝 (𝑢,𝑣) and 𝜑𝑑𝑜𝑤𝑛 (𝑢) B −𝜑𝑢𝑝 (𝑢).

For an arc 𝑎, let 𝜇(𝑎) be the first vertex (i.e., then one closest to apex(𝑎)) from 𝑊 on the apex(𝑎)-𝑟-path in 𝑇 .

• For an up-arc 𝑎 ∈ 𝐵, we set 𝜎(𝑎) = 𝜑𝑢𝑝 (𝜇(𝑎)) · (−1)dist𝑢𝑝 (apex(𝑎) ,𝜇 (𝑎) ) .

• For a down-arc 𝑎 ∈ 𝐵, we set 𝜎(𝑎) = 𝜑𝑑𝑜𝑤𝑛 (𝜇(𝑎)) · (−1)dist𝑑𝑜𝑤𝑛 (apex(𝑎) ,𝜇 (𝑎) ) .

Figure 5.1 shows an example of this signing for 𝐵 = 𝐴.

Claim 5.4. Let 𝑎 ∈ 𝐴𝑢𝑝 ∩ 𝐵 and let 𝑢 ∈ 𝑊 ∩ 𝑉 (𝑃apex(𝑎)𝑟 ). Assume that no vertex in 𝑊 ∩ 𝑉 (𝑃apex(𝑎)𝑢) \ {𝑢} is
up-independent. Then 𝜎(𝑎) = 𝜑𝑢𝑝 (𝑢) · (−1)dist𝑢𝑝 (apex(𝑎) ,𝑢) .

Proof of claim. Let𝑊∩𝑉 (𝑃apex(𝑎)𝑢) = (𝜇(𝑎) = 𝑢𝑠 , . . . , 𝑢0 = 𝑢) with 𝑢𝑠 , . . . , 𝑢0 appearing in this order when traversing
𝑃apex(𝑎)𝑢 from apex(𝑎) to 𝑢. Using 𝜑𝑢𝑝 (𝑢𝑖) = 𝜑𝑢𝑝 (𝑢𝑖−1) · (−1)dist𝑢𝑝 (𝑢𝑖 ,𝑢𝑖−1 ) for 𝑖 = 1, . . . , 𝑠, we obtain

𝜎(𝑎) = 𝜑𝑢𝑝 (𝑢𝑠) · (−1)dist𝑢𝑝 (apex(𝑎) ,𝑢𝑠 ) = 𝜑𝑢𝑝 (𝑢) · (−1)dist𝑢𝑝 (apex(𝑎) ,𝑢𝑠 )+
∑𝑠

𝑖=1 dist𝑢𝑝 (𝑢𝑖 ,𝑢𝑖−1 )

= 𝜑𝑢𝑝 (𝑢) · (−1)dist𝑢𝑝 (apex(𝑎) ,𝑢) .

Analogously, we obtain the following claim.

Claim 5.5. Let 𝑎 ∈ 𝐴𝑑𝑜𝑤𝑛 ∩ 𝐵 and let 𝑢 ∈ 𝑊 ∩ 𝑉 (𝑃apex(𝑎)𝑟 ). Assume that no vertex in 𝑊 ∩ 𝑉 (𝑃apex(𝑎)𝑢) \ {𝑢} is
down-independent. Then 𝜎(𝑎) = 𝜑𝑑𝑜𝑤𝑛 (𝑢) · (−1)dist𝑑𝑜𝑤𝑛 (apex(𝑎) ,𝑢) .

Claim 5.6. Let ℓ = (𝑢, 𝑣) ∈ 𝐿 and let 𝑎 and 𝑎′ be two up-arcs in 𝐵 that appear consecutively on 𝑃apex(ℓ )𝑣 . Then
𝜎(𝑎′) = −𝜎(𝑎).

Proof of claim. Let 𝑎 = (𝑥, 𝑦) and 𝑎′ = (𝑥′, 𝑦′) and assume w.l.o.g. that 𝑎 appears before 𝑎′ on 𝑃apex(ℓ )𝑣 (traversing
it from apex(ℓ) to 𝑣), i.e., 𝑎 is above 𝑎′. No vertex 𝑣 ∈ 𝑉 (𝑃𝑥𝑦′ ) is up-independent because 𝑎′ ∈ −−→cov(ℓ) ∩ 𝐴𝑣 ∩ 𝐴𝑢𝑝 and
𝑎 ∈ −−→cov(ℓ) \ 𝐴𝑣 . As 𝜇(𝑎) is the first vertex from 𝑊 on 𝑃𝑦𝑟 , we can apply Claim 5.4 to conclude that

𝜎(𝑎′) = 𝜑𝑢𝑝 (𝜇(𝑎)) · (−1)dist𝑢𝑝 (𝑦′ ,𝜇 (𝑎) ) = (−1) · 𝜑𝑢𝑝 (𝜇(𝑎)) · (−1)dist𝑢𝑝 (𝑦,𝜇 (𝑎) ) = −𝜎(𝑎)

because 𝑎 and 𝑎′ are consecutive up-arcs from 𝐵 on 𝑃apex(ℓ )𝑣 , i.e., dist𝑢𝑝 (𝑦′, 𝜇(𝑎)) = dist𝑢𝑝 (𝑦, 𝜇(𝑎)) + 1.

Analogously, we obtain the following claim:

Claim 5.7. Let ℓ = (𝑢, 𝑣) ∈ 𝐿 and let 𝑎 and 𝑎′ be two down-arcs in 𝐵 that appear consecutively on 𝑃𝑢apex(ℓ ) . Then
𝜎(𝑎′) = −𝜎(𝑎).
Now, we are ready to show that our signing satisfies (5.1). Let ℓ ∈ 𝐿. If −−→cov(ℓ) ∩ 𝐵 consists of only up- or only down-arcs,
this follows from Claim 5.6 or Claim 5.7, respectively. Finally, assume that ℓ is a 𝑊-cross-link such that −−→cov(ℓ) ∩ 𝐵

contains at least one up- and one down-arc. Let apex(ℓ) = 𝑢 and let 𝑎 = (𝑥, 𝑦) and 𝑎′ = (𝑥′, 𝑦′) be the up- and the
down-arc in −−→cov(ℓ) ∩ 𝐵 closest to 𝑢. No vertex 𝑣 ∈ 𝑉 (𝑃𝑦𝑢) \ {𝑢} is up-independent because 𝑎 ∈ −−→cov(ℓ) ∩ 𝐴𝑢𝑝 ∩ 𝐴𝑣

and 𝑎′ ∈ −−→cov(ℓ) \ 𝐴𝑣 . No vertex 𝑣 ∈ 𝑉 (𝑃𝑥′𝑢) \ {𝑢} is down-independent because 𝑎′ ∈ −−→cov(ℓ) ∩ 𝐴𝑑𝑜𝑤𝑛 ∩ 𝐴𝑣 and
𝑎 ∈ −−→cov(ℓ) \ 𝐴𝑣 . By Claim 5.4 and Claim 5.5, using that 𝑎 and 𝑎′ are the up-/down-arc in −−→cov(ℓ) ∩ 𝐵 closest to 𝑢, we
get 𝜎(𝑎) = 𝜑𝑢𝑝 (𝑢) = −𝜑𝑑𝑜𝑤𝑛 (𝑢) = −𝜎(𝑎′). Claim 5.6 and Claim 5.7 allow us to conclude that the signs of the arcs in
−−→cov(ℓ) ∩ 𝐵 alternate along 𝑃ℓ , implying

∑
𝑎∈−→cov(ℓ )∩𝐵 𝜎(𝑎) ∈ {−1, 0, 1} as desired.

The fact that 𝑀 is totally unimodular implies that all vertex solutions to the linear program (2.1) are integral. We can
find an optimum vertex solution in polynomial time, giving an optimum solution to (𝑇, 𝐿, 𝑐, 𝑟).
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Figure 5.1: The signing constructed in the proof of Theorem 5.3 for the willow from Figure 4.2 and 𝐵 = 𝐴 (the set of all
arcs).

6 Dynamic program for instances of constant visible width In this section, we define the notion of the visible
width of a WDTAP instance. We then show that WDTAP instances with constant visible width can be solved exactly using
a dynamic program. Let (𝑇 = (𝑉, 𝐴), 𝐿, 𝑐) be an instance of WDTAP and let 𝑇 be rooted at 𝑟 ∈ 𝑉 . We introduce some
further common terminology that we will use in the following. Given 𝑣 ∈ 𝑉 \ {𝑟}, we call the endpoint of 𝑎𝑣 other than 𝑣

the parent of 𝑣. (Recall that 𝑎𝑣 is the first arc on the 𝑣-𝑟-path in 𝑇 .) We call a vertex 𝑤 that has 𝑣 as its parent a child of 𝑣.
For 𝑣 ∈ 𝑉 , we say that a vertex 𝑤 is an ancestor of 𝑣 if 𝑤 lies on the 𝑣-𝑟-path in 𝑇 , and we say that 𝑣 is a descendant of 𝑤. If
in addition, 𝑤 ≠ 𝑣, we call 𝑤 a strict ancestor of 𝑣 and 𝑣 a strict descendant of 𝑤. Note that for 𝑣 ∈ 𝑉 , the set of descendants
of 𝑣 is 𝑈𝑣 , the vertex set of 𝑇𝑣 . Finally, we call an arc 𝑎′ an ancestor of another arc 𝑎 if 𝑎′ appears on the apex(𝑎)-𝑟 path in
𝑇 . In order to formally introduce the concept of visible width, we need the notion of an ancestor-free arc set.

Definition 6.1. We call an arc set 𝐹 ⊆ 𝐴 ancestor-free if there are no arcs 𝑎, 𝑎′ ∈ 𝐹 such that 𝑎′ appears in the
apex(𝑎)-𝑟 path in 𝑇 .

We now define the notion of which arcs in the subtree of 𝑣 are visible to 𝑣.

Definition 6.2. We say that an arc 𝑎 ∈ 𝐴𝑣 is visible to a vertex 𝑣 ∈ 𝑉 (with respect to a set of links 𝐿′) if there exists a
link ℓ ∈ 𝐿′ such that 𝑎 ∈ −−→cov(ℓ) and 𝑣 ∈ in(𝑃ℓ), where in(𝑃ℓ) denotes the set of inner vertices of 𝑃ℓ . We denote by 𝐴𝑣𝑖𝑠

𝑣 (𝐿′)
the set of arcs that are visible from 𝑣 with respect to 𝐿′.

Definition 6.3. For a vertex 𝑣 ∈ 𝑉 , we define the visible up-width, denoted by viwidth𝑢𝑝 (𝑣) (visible down-width,
denoted by viwidth𝑑𝑜𝑤𝑛 (𝑣)) at 𝑣 to be the maximum size of an ancestor-free set of up-arcs (down-arcs) that are visible for 𝑣
(with respect to 𝐿). We define the visible width at 𝑣 as

viwidth(𝑣) B max{viwidth𝑢𝑝 (𝑣), viwidth𝑑𝑜𝑤𝑛 (𝑣)}.

We define the visible width of the instance to be max𝑣∈𝑉 viwidth(𝑣).

Definition 6.4. We call a link set 𝐿′ ⊆ 𝐿 𝑘-thin if for every 𝑣 ∈ 𝑉 , |{ℓ ∈ 𝐿′ : 𝑣 ∈ in(𝑃ℓ)}| ≤ 𝑘 .

We remark that our definition of thinness slightly differs from the one introduced in [23] (in the context of WTAP) in that
we do not count links ending in a vertex 𝑣.

Lemma 6.5. Assume that (𝑇 = (𝑉, 𝐴), 𝐿, 𝑐) has visible width at most 𝑘 . Let 𝐹 ⊆ 𝐿 be a shadow-minimal (meaning that
no link can be replaced by a strict shadow without destroying feasibility) solution to the instance. Then 𝐹 is 2𝑘-thin.

Proof. As 𝐹 is shadow-minimal, we have ℓ = 𝑠(ℓ) and 𝑃ℓ = 𝑃ℓ for every ℓ ∈ 𝐹. Let 𝑣 ∈ 𝑉 and let
𝐹′ B {ℓ ∈ 𝐹 : 𝑣 ∈ in(𝑃ℓ)}. We need to show that |𝐹′ | ≤ 2𝑘 . For each ℓ ∈ 𝐹′, let 𝑤ℓ ∈ 𝑈𝑣 \ {𝑣} be an endpoint
of ℓ (this endpoint is unique unless ℓ is a 𝑣-cross-link, in which case we may select either endpoint). Let 𝑎ℓ ∈ 𝐴(𝑃ℓ) be
the arc incident to 𝑤ℓ . Note that 𝑎ℓ ∈ 𝐴𝑣 . Let 𝐹′𝑢𝑝 B {ℓ ∈ 𝐹′ : 𝑎ℓ ∈ 𝐴𝑢𝑝} and let 𝐹′

𝑑𝑜𝑤𝑛
B {ℓ ∈ 𝐹′ : 𝑎ℓ ∈ 𝐴𝑑𝑜𝑤𝑛}. We

show that |𝐹′𝑢𝑝 | ≤ 𝑘 and |𝐹′
𝑑𝑜𝑤𝑛
| ≤ 𝑘 , which implies the desired statement. We only show |𝐹′𝑢𝑝 | ≤ 𝑘 , |𝐹′

𝑑𝑜𝑤𝑛
| ≤ 𝑘 can be
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derived analogously. We observe that by shadow-minimality of 𝐹, we must have 𝑎ℓ ∈ −−→cov(ℓ) for every ℓ ∈ 𝐹′. In particular,
ℓ witnesses that 𝑎ℓ is visible for 𝑣. In fact, shadow-minimality allows us to derive an even stronger statement: we must have
𝑎ℓ ∈ −−→cov(ℓ) \⋃ℓ′∈𝐹\{ℓ }

−−→cov(ℓ′). In particular, the arcs (𝑎ℓ)ℓ∈𝐹′𝑢𝑝
are pairwise distinct. We further claim that they form an

ancestor-free arc set. As viwidth(𝑣) ≤ 𝑘 , this implies |𝐹′𝑢𝑝 | ≤ 𝑘 . Assume towards a contradiction that there were two links
ℓ = (𝑢, 𝑥), ℓ′ = (𝑢′, 𝑥′) ∈ 𝐹′𝑢𝑝 such that 𝑎ℓ appears on the path 𝑃𝑦′𝑟 in 𝑇 from the head 𝑦′ of 𝑎ℓ′ C (𝑥′, 𝑦′) to the root 𝑟.
As 𝑎ℓ ∈ 𝐴𝑣 , 𝑎ℓ appears on the 𝑦′-𝑣-subpath 𝑃𝑦′𝑣 of 𝑃𝑦′𝑟 . As 𝑦′ is the parent of the head 𝑥′ of ℓ′ and 𝑣 ∈ in(𝑃ℓ′ ), 𝑃𝑦′𝑣 is a
subpath of 𝑃ℓ′ and as 𝑣 is an ancestor of 𝑦′, ℓ′ covers every up-arc on that path, including 𝑎ℓ . But this contradicts the fact
that 𝑎ℓ ∈ −−→cov(ℓ) \⋃ℓ′′∈𝐹\{ℓ }

−−→cov(ℓ′′).

We remark that there always exists a shadow-minimal optimum solution because we can iteratively replace links in an
optimum solution by strict shadows without increasing the cost until the solution is shadow-minimal.

Lemma 6.6. Let 𝑁 ∈ N be a constant. Given a rooted WDTAP instance (𝑇, 𝐿, 𝑐, 𝑟), we can, in polynomial time, find a
cheapest 𝑁-thin solution, or decide that the instance is infeasible.

Proof. Let (𝑇, 𝐿, 𝑐, 𝑟) be a rooted instance of WDTAP. Recall that for 𝑣 ∈ 𝑉 , 𝑇𝑣 = (𝑈𝑣 , 𝐴𝑣) is the subtree rooted at 𝑣.
We define the following three links sets for 𝑣 ∈ 𝑉 :

• 𝐿𝑣 is the set of links that have at least one endpoint in 𝑈𝑣 \ {𝑣}. Note that any link that covers an arc 𝑎 ∈ 𝐴𝑣 must be
contained in 𝐿𝑣 .

• 𝐿𝑜𝑢𝑡
𝑣 consists of all links with one endpoint in𝑈𝑣 \ {𝑣} and the other endpoint in 𝑉 \𝑈𝑣 . Note that for every ℓ ∈ 𝐿𝑜𝑢𝑡

𝑣 ,
𝑣 ∈ in(𝑃ℓ).

• 𝐿𝑐𝑟𝑜𝑠𝑠
𝑣 consists of all links ℓ with both endpoints in 𝑈𝑣 \ {𝑣} and apex(ℓ) = 𝑣. Note that for every ℓ ∈ 𝐿𝑐𝑟𝑜𝑠𝑠

𝑣 ,
𝑣 ∈ in(𝑃ℓ).

We further point out that if ℓ ∈ 𝐿 and 𝑣 ∈ in(𝑃ℓ), then ℓ ∈ 𝐿𝑜𝑢𝑡
𝑣 ∪ 𝐿𝑐𝑟𝑜𝑠𝑠

𝑣 .
Let 𝑣 ∈ 𝑉 and 𝑌 ⊆ 𝐿𝑜𝑢𝑡

𝑣 . We call a link set 𝐹 ⊆ 𝐿𝑣 feasible for (𝑣,𝑌 ) if 𝐹 is 𝑁-thin, 𝐹 ∩ 𝐿𝑜𝑢𝑡
𝑣 = 𝑌 and 𝐹 covers every

arc in 𝐴𝑣 . We define 𝑐(𝑣,𝑌 ) to be the minimum cost of a feasible link set for (𝑣,𝑌 ), or∞, if no such link set exists.
We will use dynamic programming to, for every 𝑣 ∈ 𝑉 and 𝑌 ⊆ 𝐿𝑜𝑢𝑡

𝑣 with |𝑌 | ≤ 𝑁 , compute 𝑐(𝑣,𝑌 ), as well as a
feasible link set 𝐹∗ (𝑣,𝑌 ) for (𝑣,𝑌 ) with 𝑐(𝐹∗ (𝑣,𝑌 )) = 𝑐(𝑣,𝑌 ), or 𝐹∗ (𝑣,𝑌 ) = ∅, if 𝑐(𝑣,𝑌 ) = ∞. We remark that if the
instance admits a feasible solution, then by shadow-completeness, we, for every arc 𝑎 = (𝑢, 𝑤), have a link ℓ = (𝑤, 𝑢) just
covering 𝑎, and we can always use them to complete 𝑌 to an 𝑁-thin solution. We note that 𝐿𝑟 = 𝐿 (assuming that we do not
have links of the form (𝑣, 𝑣) that do not cover any arc) and 𝐿𝑜𝑢𝑡

𝑟 = ∅, so 𝐹∗ (𝑟, ∅) yields a cheapest 𝑁-thin solution to the
instance, or 𝑐(𝑟, ∅) = ∞ and 𝐹∗ (𝑟, ∅) = ∅ if no such solution exists.

As 𝑁 is a constant, there is only a polynomial number of pairs (𝑣,𝑌 ) that we consider. We traverse the pairs in order of
non-increasing distance of 𝑣 to the root, which ensures that when considering a pair (𝑣,𝑌 ), all pairs (𝑣′, 𝑌 ′) with 𝑣′ ∈ 𝑈𝑣 \{𝑣}
have already been processed. Hence, it remains to show how to, in polynomial time, compute 𝑐(𝑣,𝑌 ) and 𝐹∗ (𝑣,𝑌 ), assuming
that we have already computed 𝑐(𝑣′, 𝑌 ′) and 𝐹∗ (𝑣′, 𝑌 ′) for all pairs (𝑣′, 𝑌 ′) with 𝑣′ ∈ 𝑈𝑣 \ {𝑣}.

If 𝑣 is a leaf of 𝑇 , then 𝐿𝑣 = 𝐿𝑜𝑢𝑡
𝑣 = ∅ and 𝐴𝑣 = ∅ and we have 𝑐(𝑣, ∅) = 0 and 𝐹∗ (𝑣, ∅) = ∅. Next, assume that 𝑣 is not

a leaf of 𝑇 . Let 𝑌 ⊆ 𝐿𝑜𝑢𝑡
𝑣 such that |𝑌 | ≤ 𝑁 . For 𝑍 ⊆ 𝐿𝑐𝑟𝑜𝑠𝑠

𝑣 with |𝑌 | + |𝑍 | ≤ 𝑁 , we say that a link set 𝐹 ⊆ 𝐿𝑣 is feasible
for (𝑣,𝑌 , 𝑍) if it is feasible for (𝑣,𝑌 ) and 𝐹 ∩ 𝐿𝑐𝑟𝑜𝑠𝑠

𝑣 = 𝑍 . We denote the minimum cost of a link set that is feasible for
(𝑣,𝑌 , 𝑍) by 𝑐(𝑣,𝑌 , 𝑍) and let 𝑐(𝑣,𝑌 , 𝑍) = ∞ if no such link set exists. In addition to the values 𝑐(𝑣,𝑌 , 𝑍), we will compute
link sets 𝐹∗ (𝑣,𝑌 , 𝑍) such that 𝐹∗ (𝑣,𝑌 , 𝑍) is a feasible link set for (𝑣,𝑌 , 𝑍) with 𝑐(𝐹∗ (𝑣,𝑌 , 𝑍)) = 𝑐(𝑣,𝑌 , 𝑍), if exists, and
𝐹∗ (𝑣,𝑌 , 𝑍) = ∅ if 𝑐(𝑣,𝑌 , 𝑍) = ∞. We have

𝑐(𝑣,𝑌 ) = min{𝑐(𝑣,𝑌 , 𝑍) : 𝑍 ⊆ 𝐿𝑐𝑟𝑜𝑠𝑠
𝑣 , |𝑌 | + |𝑍 | ≤ 𝑁}

because if 𝐹 ⊆ 𝐿𝑣 is feasible for (𝑣,𝑌 , 𝑍), then it is also feasible for (𝑣,𝑌 ), and conversely, if 𝐹 is feasible for (𝑣,𝑌 ), then 𝐹

is 𝑁-thin, so 𝑁 ≥ |𝐹 ∩ 𝐿𝑜𝑢𝑡
𝑣 | + |𝐹 ∩ 𝐿𝑐𝑟𝑜𝑠𝑠

𝑣 | = |𝑌 | + |𝐹 ∩ 𝐿𝑐𝑟𝑜𝑠𝑠
𝑣 |, and hence, 𝐹 is feasible for (𝑣,𝑌 , 𝐹 ∩ 𝐿𝑐𝑟𝑜𝑠𝑠

𝑣 ). Moreover,
if 𝑍 attains the above minimum, then we can set 𝐹∗ (𝑣,𝑌 ) = 𝐹∗ (𝑣,𝑌 , 𝑍). As there is only a polynomial number of sets
𝑍 ⊆ 𝐿𝑐𝑟𝑜𝑠𝑠

𝑣 with |𝑌 | + |𝑍 | ≤ 𝑁 , it suffices to show how to, for a fixed choice of 𝑍 , compute 𝑐(𝑣,𝑌 , 𝑍) and 𝐹∗ (𝑣,𝑌 , 𝑍).
Let 𝑣1, . . . , 𝑣𝑘 be the children of 𝑣 in 𝑇 (recall that 𝑣 is not a leaf). For 𝑖 ∈ {0, . . . , 𝑘}, let 𝐿𝑖

𝑣 be the set of links with at
least one endpoint in 𝑈𝑖 B

⋃𝑖
𝑗=1 𝑈𝑣𝑖 , i.e., 𝐿0

𝑣 = ∅ and 𝐿𝑘
𝑣 = 𝐿𝑣 . We call a link set 𝐹 ⊆ 𝐿𝑖

𝑣 feasible for (𝑣,𝑌 , 𝑍, 𝑖) if 𝐹 is
𝑁-thin, 𝐹 ∩ 𝐿𝑜𝑢𝑡

𝑣 = 𝑌 ∩ 𝐿𝑖
𝑣 , 𝐹 ∩ 𝐿𝑐𝑟𝑜𝑠𝑠

𝑣 = 𝑍 ∩ 𝐿𝑖
𝑣 , and 𝐹 covers every arc in 𝐴𝑖 B

⋃𝑖
𝑗=1 𝐴𝑣 𝑗 ∪ {𝑎𝑣 𝑗 }. (Recall that 𝑎𝑣 𝑗 is the

arc connecting 𝑣 𝑗 to its parent 𝑣.) We define 𝑐(𝑣,𝑌 , 𝑍, 𝑖) to be the minimum cost of a feasible link set for (𝑣,𝑌 , 𝑍, 𝑖), or ∞,
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if no such link set exists. We will compute the values 𝑐(𝑣,𝑌 , 𝑍, 𝑖) for 𝑖 = 0, . . . , 𝑘 , and, whenever 𝑐(𝑣,𝑌 , 𝑍, 𝑖) ≠ ∞, we will
compute a link set 𝐹∗ (𝑣,𝑌 , 𝑍, 𝑖) attaining 𝑐(𝑣,𝑌 , 𝑍, 𝑖); otherwise, we will set 𝐹∗ (𝑣,𝑌 , 𝑍, 𝑖) = ∅.

Note that 𝑐(𝑣,𝑌 , 𝑍) = 𝑐(𝑣,𝑌 , 𝑍, 𝑘) and that 𝐹∗ (𝑣,𝑌 , 𝑍, 𝑘) is a feasible choice for 𝐹∗ (𝑣,𝑌 , 𝑍). Hence, it remains to
explain how to determine the values 𝑐(𝑣,𝑌 , 𝑍, 𝑖) and 𝐹∗ (𝑣,𝑌 , 𝑍, 𝑖) in polynomial time.

For 𝑖 ∈ {1, . . . , 𝑘}, let ℓ∗
𝑖

be the link with endpoints 𝑣𝑖 and 𝑣 that covers 𝑎𝑣𝑖 , i.e., ℓ∗
𝑖
= (𝑣, 𝑣𝑖) if 𝑎𝑣𝑖 = (𝑣𝑖 , 𝑣) and vice

versa. Note that ℓ∗
𝑖
∈ 𝐿 by shadow-completeness and because there exists a link in 𝐿 covering 𝑎𝑣𝑖 ; otherwise, the instance

is infeasible and we can return this information. Moreover, let Y𝑖 be the collection of all sets 𝑌 ′ ⊆ 𝐿𝑜𝑢𝑡
𝑣𝑖

such that |𝑌 ′ | ≤ 𝑁

and 𝑌 ′ ∩ (𝐿𝑜𝑢𝑡
𝑣 ∪ 𝐿𝑐𝑟𝑜𝑠𝑠

𝑣 ) = (𝑌 ∪ 𝑍) ∩ 𝐿𝑜𝑢𝑡
𝑣𝑖

.

Claim 6.7. We have 𝑐(𝑣,𝑌 , 𝑍, 0) = 0. For 𝑖 ∈ {1, . . . , 𝑘},

𝑐(𝑣,𝑌 , 𝑍, 𝑖) = 𝑐(𝑣,𝑌 , 𝑍, 𝑖 − 1) + 𝑐(𝑌 ∩ (𝐿𝑖
𝑣 \ 𝐿𝑖−1

𝑣 )) + 𝑐(𝑍 ∩ (𝐿𝑖
𝑣 \ 𝐿𝑖−1

𝑣 ))
+min{𝑐(𝑣𝑖 , 𝑌 ′) − 𝑐(𝑌 ′ ∩ (𝑌 ∪ 𝑍)) + 𝜒[𝑎𝑣𝑖 not covered by 𝑌 ′ ∪ 𝑌 ∪ 𝑍] · 𝑐(ℓ∗𝑖 ) : 𝑌 ′ ∈ Y𝑖},

where 𝜒[𝑎𝑣𝑖 is not covered by 𝑌 ′ ∪ 𝑌 ∪ 𝑍] is 1 if 𝑎𝑣𝑖 is not covered by 𝑌 ′ ∪ 𝑌 ∪ 𝑍 , and 0 otherwise.

Proof of claim. As 𝐿0
𝑣 = ∅, 𝑐(𝑣,𝑌 , 𝑍, 0) = 0. Next, let 𝑖 ∈ {1, . . . , 𝑘}. We first prove that every set 𝑌 ′ ∈ Y𝑖 for which

the right hand side is finite yields a valid upper bound on 𝑐(𝑣,𝑌 , 𝑍, 𝑖). To this end, assume that 𝑐(𝑣,𝑌 , 𝑍, 𝑖 − 1) < ∞ and
let 𝐹′ B 𝐹∗ (𝑣,𝑌 , 𝑍, 𝑖 − 1) attain this value. Let further 𝑌 ′ ∈ Y𝑖 such that 𝑐(𝑣𝑖 , 𝑌 ′) < ∞ and let 𝐹𝑖 B 𝐹∗ (𝑣𝑖 , 𝑌 ′). Let
𝐹 B 𝐹′ ∪ 𝐹𝑖 ∪ (𝑌 ∪ 𝑍) ∩ 𝐿𝑖

𝑣 , if 𝑎𝑣𝑖 is covered by 𝑌 ′ ∪𝑌 ∪ 𝑍 , and let 𝐹 B 𝐹′ ∪ 𝐹𝑖 ∪ (𝑌 ∪ 𝑍) ∩ 𝐿𝑖
𝑣 ∪ {ℓ∗𝑖 } otherwise. Then

(6.1) 𝐹 ∩ 𝐿𝑖−1
𝑣 = 𝐹′ and 𝐹 ∩ 𝐿𝑣𝑖 = 𝐹𝑖 and 𝐹 ∩ (𝐿𝑜𝑢𝑡

𝑣 ∪ 𝐿𝑐𝑟𝑜𝑠𝑠
𝑣 ) = (𝑌 ∪ 𝑍) ∩ 𝐿𝑖

𝑣

by construction and by definition of Y𝑖 . Then 𝐹 covers every arc in 𝐴𝑖 because 𝐹′ covers every arc in 𝐴𝑖−1, 𝐹𝑖 covers every
arc in 𝐴𝑣𝑖 , and we also made sure that 𝑎𝑣𝑖 is covered. We further have 𝐹 ⊆ 𝐿𝑖

𝑣 by construction. To see that 𝐹 is 𝑁-thin,
we note that for every vertex 𝑣′ ∈ 𝑈𝑖−1, there are at most 𝑁 links in 𝐹 with 𝑣′ ∈ in(𝑃ℓ) because 𝐹′ is 𝑁-thin, by (6.1)
and because if 𝑣′ ∈ in(𝑃ℓ) for ℓ ∈ 𝐹, then ℓ ∈ 𝐿𝑖−1

𝑣 . Similarly, for every vertex 𝑣′ ∈ 𝑈𝑣𝑖 , there are at most 𝑁 links in 𝐹

with 𝑣′ ∈ in(𝑃ℓ) by (6.1) and because 𝐹𝑖 is 𝑁-thin. There are at most 𝑁 links in 𝐹 with 𝑣 ∈ in(𝑃ℓ) by (6.1) and because
|𝑌 | + |𝑍 | ≤ 𝑁 . For 𝑤 ∈ 𝑈𝑣 \ (𝑈𝑖 ∪ {𝑣}), there are at most 𝑁 links in 𝐹 with 𝑤 ∈ in(𝑃ℓ) because 𝐹 ⊆ 𝐿𝑖

𝑣 and |𝑍 | ≤ 𝑁 .
Finally, for 𝑤 ∈ 𝑉 \𝑈𝑣 , there are at most 𝑁 links in 𝐹 with 𝑤 ∈ in(𝑃ℓ) because |𝑌 | ≤ 𝑁 .

It remains to show that the expression on the right-hand side that we evaluate yields an upper bound on 𝑐(𝐹). If we
include the link ℓ∗

𝑖
, then we add its cost. The cost of every link in 𝐿𝑖−1

𝑣 ∩ 𝐹 = 𝐹′ is added (via the term 𝑐(𝑣,𝑌 , 𝑍, 𝑖 − 1)).
The cost of every link in 𝐹𝑖 \ (𝑌 ∪ 𝑍) is added via the term 𝑐(𝑣𝑖 , 𝑌 ′) − 𝑐(𝑌 ′ ∩ (𝑌 ∪ 𝑍)) because

𝐹𝑖 ∩ (𝑌 ∪ 𝑍) = (𝐹𝑖 ∩ 𝐿𝑜𝑢𝑡
𝑣𝑖
) ∩ (𝑌 ∪ 𝑍) = 𝑌 ′ ∩ (𝑌 ∪ 𝑍).

Finally, the cost of every link in (𝑌 ∪ 𝑍) ∩ (𝐿𝑖
𝑣 \ 𝐿𝑖−1

𝑣 ) is added.
Next, we show that if 𝑐(𝑣,𝑌 , 𝑍, 𝑖) is finite, there exists a set 𝑌 ′ ∈ Y𝑖 for which the value of the right-hand side is at

most 𝑐(𝑣,𝑌 , 𝑍, 𝑖). To this end, let 𝐹 ⊆ 𝐿𝑖
𝑣 be feasible for (𝑣,𝑌 , 𝑍, 𝑖) with 𝑐(𝐹) = 𝑐(𝑣,𝑌 , 𝑍, 𝑖). Define 𝐹′ B 𝐹 ∩ 𝐿𝑖−1

𝑣 and
𝐹𝑖 B 𝐹∩ 𝐿𝑣𝑖 , and let𝑌 ′ B 𝐹∩ 𝐿𝑜𝑢𝑡

𝑣𝑖
. Then 𝐹′ is feasible for (𝑣,𝑌 , 𝑍, 𝑖−1) and 𝐹𝑖 is feasible for (𝑣,𝑌 ′). Moreover, |𝑌 ′ | ≤ 𝑁

(as 𝐹 is 𝑁-thin) and

𝑌 ′ ∩ (𝐿𝑜𝑢𝑡
𝑣 ∪ 𝐿𝑐𝑟𝑜𝑠𝑠

𝑣 ) = 𝐹 ∩ 𝐿𝑜𝑢𝑡
𝑣𝑖
∩ (𝐿𝑜𝑢𝑡

𝑣 ∪ 𝐿𝑐𝑟𝑜𝑠𝑠
𝑣 ) = 𝐿𝑜𝑢𝑡

𝑣𝑖
∩ (𝐹 ∩ (𝐿𝑜𝑢𝑡

𝑣 ∪ 𝐿𝑐𝑟𝑜𝑠𝑠
𝑣 ))

= 𝐿𝑜𝑢𝑡
𝑣𝑖
∩ (𝑌 ∪ 𝑍) ∩ 𝐿𝑖

𝑣 = 𝐿𝑜𝑢𝑡
𝑣𝑖
∩ (𝑌 ∪ 𝑍),

so 𝑌 ′ ∈ Y𝑖 . It remains to show that the cost term that we get on the right-hand side when choosing 𝑌 ′ is at most 𝑐(𝐹). To
this end, we have

𝑐(𝑣,𝑌 , 𝑍, 𝑖 − 1) ≤ 𝑐(𝐹′) and 𝑐(𝑣𝑖 , 𝑌 ′) − 𝑐(𝑌 ′ ∩ (𝑌 ∪ 𝑍)) ≤ 𝑐(𝐹𝑖) − 𝑐(𝐹𝑖 ∩ (𝑌 ∪ 𝑍)) = 𝑐(𝐹𝑖 \ (𝑌 ∪ 𝑍))

because 𝑌 ′ ∩ (𝑌 ∪ 𝑍) = (𝐹 ∩ 𝐿𝑜𝑢𝑡
𝑣𝑖
) ∩ (𝑌 ∪ 𝑍) = 𝐹𝑖 ∩ (𝑌 ∪ 𝑍) and because 𝐹′ and 𝐹𝑖 are feasible for (𝑣,𝑌 , 𝑍, 𝑖 − 1) and

(𝑣𝑖 , 𝑌 ′), respectively. We note that the subsets 𝐹′, 𝐹𝑖 \ (𝑌 ∪ 𝑍), 𝑌 ∩ (𝐿𝑖
𝑣 \ 𝐿𝑖−1

𝑣 ) and 𝑍 ∩ (𝐿𝑖
𝑣 \ 𝐿𝑖−1

𝑣 ) are pairwise distinct
because 𝐹′ ∩ 𝐹𝑖 ⊆ 𝑍 . Finally, we observe that none of the previous subsets can contain the link ℓ∗

𝑖
and that if 𝑎𝑣𝑖 is not

covered by 𝑌 ′ ∪𝑌 ∪ 𝑍 , then 𝑎𝑣𝑖 can only be covered by ℓ∗
𝑖
, so ℓ∗

𝑖
∈ 𝐹. This is because every link covering 𝑎𝑣𝑖 must have one

endpoint in𝑈𝑣𝑖 and its other endpoint in 𝑉 \𝑈𝑣𝑖 and unless the endpoints are 𝑣 and 𝑣𝑖 (i.e., ℓ = ℓ∗
𝑖
), we have ℓ ∈ 𝑌 ′ ∪𝑌 ∪ 𝑍 .
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Using the claim, we can compute all of the values 𝑐(𝑣,𝑌 , 𝑍, 𝑖) in polynomial time. In the proof of the claim, we have further
seen how to compute 𝐹∗ (𝑣,𝑌 , 𝑍, 𝑖) attaining 𝑐(𝑣,𝑌 , 𝑍, 𝑖) in polynomial time. This concludes the proof.

Combining the results of Lemmas 6.5 and 6.6, we conclude that WDTAP instances of constant visible width can be
solved exactly in polynomial time.

Corollary 6.8. If (𝑇, 𝐿, 𝑐, 𝑟) is a rooted instance of WDTAP with visible width at most 𝑘 , then we can, in polynomial
time, find an optimal solution, or decide that the instance is infeasible.

Proof. For a feasible visibly 𝑘-wide instance, there exists an optimal solution that is at most 2𝑘-thin. Hence, we can
run the dynamic programming algorithm above with 𝑁 = 2𝑘 to find the optimal solution for this instance, or decide that it
is infeasible.

7 The partial separation framework This section describes the high level framework of our algorithm, which is to
implement a partial separation oracle for a certain LP formulation we call the visibly 𝑘-wide modification LP. We then show
how this partial separation oracle implies an algorithm for the WDTAP problem.

7.1 Splitting links First, we formalize the “link splitting" operation, which will be used throughout the paper and in
particular will allow us to define the visibly 𝑘-wide modification LP.

Fix a (rooted) WDTAP instance (𝑇, 𝐿, 𝑐, 𝑟).
Definition 7.1. A splitting of the link set 𝐿 is a function 𝜎 : 𝐿 → 2𝐿 mapping ℓ ∈ 𝐿 to a set of shadows ℓ1, . . . , ℓ𝑡

of ℓ such that (the arc sets of) 𝑃ℓ1 , . . . , 𝑃ℓ𝑡 form a partition of (the arc set of) 𝑃ℓ . The support of the splitting is
supp(𝜎) B {ℓ ∈ 𝐿 : ∃ℓ′ ∈ 𝐿 : ℓ ∈ 𝜎(ℓ′)}.
Next, we define how to apply a splitting to a solution to (2.1) to generate a new feasible solution of (2.1).

Definition 7.2. Let 𝑥 be a feasible solution to (2.1) and let 𝜎 be a splitting of 𝐿. We let the solution 𝑥′ = split(𝑥, 𝜎) to
(2.1) that we obtain from 𝑥 by applying 𝜎 be defined by 𝑥′

ℓ′ B
∑

ℓ∈𝐿 : ℓ′∈𝜎 (ℓ ) 𝑥ℓ .

The following proposition shows that splitting links can only reduce the visible up- or down-width of any vertex. To state it,
we introduce the following notation.

Definition 7.3. Let 𝑥 be a solution to (2.1). The support supp(𝑥) of 𝑥 consists of all links ℓ with 𝑥ℓ > 0.

Proposition 7.4. Let 𝑥 be a solution to (2.1), let 𝜎 be a splitting of 𝐿 and let 𝑥′ B split(𝑥, 𝜎). Then for every vertex 𝑣,
the visible up-width (visible down-width) of 𝑣 with respect to supp(𝑥′) is at most the visible up-width (visible down-width)
of 𝑣 with respect to supp(𝑥).

Proof. It suffices to show that every arc that is visible for a vertex 𝑣 with respect to supp(𝑥′) is also visible for that
vertex with respect to supp(𝑥). Let 𝑎 be an arc that is visible for 𝑣 with respect to supp(𝑥′). Then there is ℓ′ ∈ supp(𝑥′) such
that 𝑎 ∈ −−→cov(ℓ′) and 𝑣 ∈ in(𝑃ℓ′ ). As ℓ′ ∈ supp(𝑥′), there is ℓ ∈ supp(𝑥) such that ℓ′ ∈ 𝜎(ℓ). Then ℓ′ is a shadow of ℓ, so
𝑎 ∈ −−→cov(ℓ) and 𝑣 ∈ in(𝑃ℓ). Hence, 𝑎 is also visible for 𝑣 with respect to supp(𝑥).

The following proposition shows that the coverage of all tree arcs is preserved by the splitting operation.

Proposition 7.5. Let 𝑥 be a feasible solution to (2.1), let 𝜎 be a splitting of 𝐿 and let 𝑥′ B split(𝑥, 𝜎). For 𝑎 ∈ 𝐴, we
have

• 𝑥′ ({ℓ ∈ 𝐿 : 𝑎 ∈ −−→cov(ℓ)}) = 𝑥({ℓ ∈ 𝐿 : 𝑎 ∈ −−→cov(ℓ)}),

• 𝑥′ ({ℓ ∈ 𝐿 : 𝑎 ∈ ←−−cov(ℓ)}) = 𝑥({ℓ ∈ 𝐿 : 𝑎 ∈ ←−−cov(ℓ)}) and

• 𝑥′ ({ℓ ∈ 𝐿 : 𝑎 ∈ cov(ℓ)}) = 𝑥({ℓ ∈ 𝐿 : 𝑎 ∈ cov(ℓ)}).

Proof. Let 𝑎 ∈ 𝐴. We only show the first equality, the other ones can be derived analogously. For any link ℓ ∈ 𝐿 with
𝑎 ∈ −−→cov(ℓ), there exists a unique link ℓ𝑎 ∈ 𝜎(ℓ) with 𝑎 ∈ −−→cov(ℓ𝑎). Conversely, if 𝑎 ∈ −−→cov(ℓ′) and ℓ′ ∈ 𝜎(ℓ), then 𝑎 ∈ −−→cov(ℓ)
(and ℓ′ = ℓ𝑎). This implies

𝑥′ ({ℓ ∈ 𝐿 : 𝑎 ∈ −−→cov(ℓ)}) =
∑︁

ℓ′∈𝐿 : 𝑎∈−→cov(ℓ′ )

∑︁
ℓ∈𝐿 : ℓ′∈𝜎 (ℓ )

𝑥ℓ =
∑︁

ℓ∈𝐿 : 𝑎∈−→cov(ℓ )

|{ℓ′ ∈ 𝜎(ℓ) : 𝑎 ∈ −−→cov(ℓ′)}|︸                             ︷︷                             ︸
=1

·𝑥ℓ

= 𝑥({ℓ ∈ 𝐿 : 𝑎 ∈ −−→cov(ℓ)}).
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The following proposition simply counts the additional cost incurred by splitting.

Proposition 7.6. Let 𝑥 be a feasible solution to (2.1), let 𝜎 be a splitting of 𝐿 and let 𝑥′ B split(𝑥, 𝜎). Then 𝑥′ is a
feasible solution to (2.1) of cost

𝑐(𝑥′) =
∑︁
ℓ∈𝐿

©­«
∑︁

ℓ′∈𝜎 (ℓ )
𝑐(ℓ′)ª®¬ · 𝑥ℓ .

Proof. Feasibility of 𝑥′ follows from Proposition 7.5. For the cost, we calculate∑︁
ℓ∈𝐿

𝑐(ℓ) · 𝑥′ℓ =
∑︁
ℓ∈𝐿

∑︁
ℓ′∈𝜎 (ℓ )

𝑐(ℓ′) · 𝑥ℓ .

We will often apply splittings sequentially, which is captured by the following definition.

Definition 7.7. Let 𝜎 and 𝜎′ be two splitting of 𝐿. Then concatenation 𝜎′ ◦ 𝜎 of the two splittings is defined via
(𝜎′ ◦ 𝜎) (ℓ) = ⋃

ℓ′∈𝜎 (ℓ ) 𝜎
′ (ℓ′).

Note that the concatenation of two splittings of 𝐿 is again a splitting of 𝐿. We further observe the following.

Proposition 7.8. Let 𝑥 be a feasible solution to (2.1) and let 𝜎 and 𝜎′ be two splitting of 𝐿. Then split(𝑥, 𝜎′ ◦ 𝜎) =
split(split(𝑥, 𝜎), 𝜎′).

Proof. Let 𝑥′ B split(𝑥, 𝜎) and 𝑥′′ B split(split(𝑥, 𝜎), 𝜎′). For ℓ′′ ∈ 𝐿, we have

𝑥′′ℓ′′ =
∑︁

ℓ′∈𝐿 : ℓ′′∈𝜎′ (ℓ′ )
𝑥′ℓ′ =

∑︁
ℓ′∈𝐿 : ℓ′′∈𝜎′ (ℓ′ )

∑︁
ℓ∈𝐿 : ℓ′∈𝜎 (ℓ )

𝑥ℓ =
∑︁

ℓ∈𝐿 : ℓ′′∈ (𝜎′◦𝜎) (ℓ )
𝑥ℓ .

For the last equality, we used that for ℓ ∈ 𝐿, 𝜎(ℓ) consists of shadows of ℓ with pairwise disjoint undirected coverages. In
particular, we can have ℓ′′ ∈ 𝜎′ (ℓ′) for at most one ℓ′ ∈ 𝜎(ℓ) because ℓ′′ has to be a shadow of ℓ′.

The following proposition helps us to bound the cost increase incurred by splittings.

Proposition 7.9. Let Δ > 1 and assume that 𝑐 : 𝐿 → [1,Δ]. Let 𝑥 be a solution to (2.1) and let 𝜎 be a splitting of 𝐿.
Let 𝑥′ B split(𝑥, 𝜎). Then

𝑐(𝑥′) ≤ 𝑐(𝑥) +
∑︁
ℓ∈𝐿
( |𝜎(ℓ) | − 1) · 𝑐(ℓ) · 𝑥ℓ ≤ 𝑐(𝑥) + Δ ·

∑︁
ℓ∈𝐿
( |𝜎(ℓ) | − 1) · 𝑥ℓ .

Proof. We have

𝑐(𝑥′) =
∑︁
ℓ∈𝐿

∑︁
ℓ′∈𝜎 (ℓ )

𝑐(ℓ′) · 𝑥ℓ ≤
∑︁
ℓ∈𝐿
|𝜎(ℓ) | · 𝑐(ℓ) · 𝑥ℓ

= 𝑐(𝑥) +
∑︁
ℓ∈𝐿
( |𝜎(ℓ) | − 1) · 𝑐(ℓ) · 𝑥ℓ ≤ 𝑐(𝑥) + Δ ·

∑︁
ℓ∈𝐿
( |𝜎(ℓ) | − 1) · 𝑥ℓ ,

where the first inequality follows from the fact that 𝑐(ℓ′) ≤ 𝑐(ℓ) whenever ℓ′ is a shadow of ℓ, and the second inequality
follows from |𝜎(ℓ) | ≥ 1 and 𝑐(ℓ) ≤ Δ.

7.2 The visibly 𝑘-wide modification LP Using splittings, we will introduce a new type of valid inequality for the
integer hull of (2.1). To define it, we need to consider subinstances that arise by contracting certain arcs. Given an arc set
𝐴∗, we denote by 𝑇/𝐴∗ the tree that arises from 𝑇 by contracting the arcs in 𝐴∗. For a link set 𝐿∗, 𝐿∗/𝐴∗ denotes the link
set arising from this contraction. For a function 𝑓 : 𝐴 → 𝐵, and 𝐶 ⊆ 𝐴, we use the notation 𝑓 ↾𝐶 to denote the restriction
of 𝑓 to the domain 𝐶.

Lemma 7.10. Let 𝜎 be any splitting of the link set and let 𝐴′ ⊆ 𝐴. Then

(7.1)
∑︁
ℓ∈𝐿

©­«
∑︁

ℓ′∈𝜎 (ℓ )
𝑐(ℓ′)ª®¬ · 𝑥ℓ ≥ 𝑐(𝑂𝑃𝑇 (𝑇/𝐴′, supp(𝜎)/𝐴′, 𝑐 ↾supp(𝜎) ))

is a valid constraint for the integer hull of (2.1), where 𝑂𝑃𝑇 (𝑇/𝐴′, supp(𝜎)/𝐴′, 𝑐 ↾supp(𝜎) ) denotes an optimum solution to
the WDTAP instance (𝑇/𝐴′, supp(𝜎)/𝐴′, 𝑐 ↾supp(𝜎) ).
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Proof. Let 𝑥 be an integral solution to (2.1) and let 𝑥′ B split(𝑥, 𝜎). Then 𝑥′ is an integral solution to (2.1) with
supp(𝑥′) ⊆ supp(𝜎). In particular, supp(𝑥′)/𝐴′ is a feasible solution to (𝑇/𝐴′, supp(𝜎)/𝐴′, 𝑐 ↾supp(𝜎) ) of cost at most
𝑐(𝑥′) = ∑

ℓ∈𝐿
(∑

ℓ′∈𝜎 (ℓ ) 𝑐(ℓ′)
)
· 𝑥ℓ by Proposition 7.6.

Definition 7.11. A visibly 𝑘-wide modification is a pair (𝜎, 𝐴′), where 𝜎 is a splitting of the link set and 𝐴′ ⊆ 𝐴,
such that (𝑇/𝐴′, supp(𝜎)/𝐴′, 𝑟) has visible width at most 𝑘 . We call the corresponding contraint (7.1) a visibly 𝑘-wide
modification inequality.

Our approach will be to observe certain solutions to the linear program (2.1) and to obtain an integral solution of relatively
low cost, or to find a visibly 𝑘-wide modification inequality violated by the current solution to add to the constraints of (2.1).

7.3 Proof of Theorem 1.1 The main technical theorem of this paper guarantees the existence of a partial separation
oracle for the visibly 𝑘-wide-modification LP. This theorem is stated below, and in this subsection we will show how to use
it to prove Theorem 1.1.

Theorem 7.12. Let 𝜀,Δ > 0. We can compute a constant 𝑘 (𝜀,Δ) with the following property: Given a rooted instance
(𝑇, 𝐿̄, 𝑐, 𝑟) of WDTAP with cost ratio at most Δ and a feasible solution 𝑥 to (2.1), we can, in polynomial time, either find a
solution 𝑆 ⊆ 𝐿̄ with 𝑐(𝑆) ≤ (1.75 + 𝜀) · 𝑐(𝑥), or find a visibly 𝑘 (𝜀,Δ)-wide modification inequality that is violated by 𝑥.

Assuming Theorem 7.12, we are now ready to prove Theorem 1.1, which we restate for convenience.
Theorem 1.1. Let Δ ≥ 1 and let 𝜀 > 0. There exists a polynomial-time (1.75+𝜀)-approximation algorithm for WDTAP,

restricted to instances with cost ratio at most Δ.
Proof. Let Δ ≥ 1 and let 𝜀 > 0. We may assume that the constants 𝜀 and Δ are rational numbers because we can replace

them with rational constants 𝜀′ and Δ′ with 0 < 𝜀′ < 𝜀 and Δ < Δ′ otherwise. Fix a rooted WDTAP instance (𝑇, 𝐿, 𝑐, 𝑟)
with cost ratio at most Δ. We can check in polynomial time if (𝑇, 𝐿, 𝑐, 𝑟) is feasible by checking if each tree arc is covered
by at least one link in 𝐿. Hence, we will assume that (𝑇, 𝐿, 𝑐, 𝑟) is feasible in the following. By re-scaling the costs, we
may assume 𝑐 : 𝐿 → [1,Δ]. Then the cost of an optimal solution 𝑂𝑃𝑇 satisfies 1 ≤ 𝑐(𝑂𝑃𝑇) ≤ Δ|𝐿 | ≤ Δ𝑛2, where 𝑛 is the
number of vertices of 𝑇 . Let 𝜀 B min{1, 𝜀

10 }, let 𝑘 B 𝑘 (𝜀,Δ) and let 𝑀 B ⌈log1+ 𝜀̄ 𝑛
2Δ⌉. We will use binary search on the

interval [1, (1 + 𝜀)𝑀 ]. Note that the runtime of the algorithm will depend on 𝜀 and Δ.
In the following, we will describe a subroutine that, given a rational number 𝑐∗ ∈ [1, (1 + 𝜀)𝑀 ], in polynomial time (in

the encoding lengths of (𝑇, 𝐿, 𝑐, 𝑟), Δ, 𝜀 and 𝑐∗) either returns a solution 𝐹 to (𝑇, 𝐿, 𝑐, 𝑟) with 𝑐(𝐹) ≤ (1.75+ 𝜀) · (1+ 𝜀) · 𝑐∗,
or decides that 𝑐∗ < 𝑐(𝑂𝑃𝑇). The subroutine is defined as follows. Given 𝑐∗, we apply the ellipsoid method to (try to)
find a feasible point 𝑥 in the polyhedron 𝑃 given by the constraints in (2.1), all visibly 𝑘-wide modification inequalities, and
𝑐(𝑥) ≤ (1 + 𝜀) · 𝑐∗. Note that the encoding length of every constraint is polynomially bounded in the encoding lengths of
(𝑇, 𝐿, 𝑐, 𝑟), 𝜀 and 𝑐∗. Moreover, 𝑃 ⊆ [0, (1+ 𝜀) · 𝑐∗]𝐿 since 𝑐(ℓ) ≥ 1 for every ℓ ∈ 𝐿. If 𝑐∗ ≥ 𝑐(𝑂𝑃𝑇), then we further have
𝑂𝑃𝑇 + [0, 𝜀̄

Δ· |𝐿 | · 𝑐
∗]𝐿 ⊆ 𝑃, where we interpret 𝑂𝑃𝑇 as a vector in {0, 1}𝐿 . Finally, we can separate all constraints in (2.1),

as well as the constraint 𝑐(𝑥) ≤ (1+ 𝜀) · 𝑐∗, in polynomial time. To separate the visibly 𝑘-wide modification inequalities, we
will use Theorem 7.12.

More precisely, in each iteration of the ellipsoid method, given 𝑦 ∈ Q𝐿 , we do the following: If 𝑦 violates any of
the constraints of (2.1) or 𝑐(𝑦) > (1 + 𝜀) · 𝑐∗, we return the corrresponding violated constraint. Otherwise, we apply
Theorem 7.12 to either find a WDTAP solution 𝐹 with 𝑐(𝐹) ≤ (1.75+𝜀) · 𝑐(𝑦) ≤ (1.75+𝜀) · (1+𝜀) · 𝑐∗, or a violated visibly
𝑘-wide modification inequality. In the first case, we return 𝐹 and stop; in the second case, we continue the ellipsoid method.
After a polynomial number of iterations, we have either found a WDTAP solution 𝐹 with 𝑐(𝐹) ≤ (1.75 + 𝜀) · (1 + 𝜀) · 𝑐∗, or
the volume of the ellipsoid is small enough, allowing us to deduce that 𝑐∗ < 𝑐(𝑂𝑃𝑇).

Throughout the binary search, we maintain an interval [(1 + 𝜀)𝑎, (1 + 𝜀)𝑏] such that 𝑐(𝑂𝑃𝑇) ≥ (1 + 𝜀)𝑎 and we have
a WDTAP solution 𝐹 with 𝑐(𝐹) ≤ (1.75 + 𝜀) · (1 + 𝜀)𝑏+1. Continually checking the point 𝑐∗ = (1 + 𝜀) ⌊ 𝑎+𝑏2 ⌋ , we obtain an
interval of the form [(1 + 𝜀)𝑡 , (1 + 𝜀)𝑡+1]. In this case, we are guaranteed an integral solution 𝐹 of cost at most

𝑐(𝐹) ≤ (1.75 + 𝜀) · (1 + 𝜀)𝑡+2 ≤ (1.75 + 𝜀) · (1 + 𝜀)2 · 𝑐(𝑂𝑃𝑇)
≤ (1.75 + 4.5𝜀 + 3.75𝜀2 + 𝜀3) · 𝑐(𝑂𝑃𝑇) ≤ (1.75 + 𝜀) · 𝑐(𝑂𝑃𝑇).

We remark that the partial separation framework has already been used in [1, 13]. The remainder of the main part of this
paper is dedicated to proving Theorem 7.12.

8 Proving the weakened dream theorem In this section, we prove the weakened dream theorem (Theorem 4.2).
To this end, we will first introduce some notation that allows us to state Theorem 8.3, a slightly more formal version of
Theorem 4.2.
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Definition 8.1. Let (𝑇, 𝐿, 𝑐, 𝑟) be a rooted instance of WDTAP, let 𝑥 be a solution to (2.1) and let 𝛼 ≥ 0. We call an
arc 𝑎 𝛼-covered if 𝑥({ℓ : 𝑎 ∈ −−→cov(ℓ)}) ≥ 𝛼 and 𝛼-heavy if 𝑥({ℓ : 𝑎 ∈ ←−−cov(ℓ)}) ≥ 𝛼. We call a link ℓ 𝛼-heavily involved if
there is an 𝛼-heavy arc 𝑎 with 𝑎 ∈ ←−−cov(ℓ).

Let 𝜀 ∈ (0, 1) and let Δ > 0. We define the following constants:

• 𝛾 B 𝜀
2Δ is used to define whether an arc 𝑎 is lightly covered, allowing us to cheaply split links ℓ with 𝑎 ∈ cov(ℓ).

• 𝜁1 B
2
𝜀

is our threshold for an arc to be “heavily covered in the right direction”, allowing us to contract it.

• 𝜁2 B
6·𝜁1 ·Δ
𝜀 · (1−𝜀) is our our threshold for an arc to be “heavily covered in the wrong direction”.

• 𝑘 B (1 + 𝛾−1) · 𝜁2 is our bound on the visible width of certain instances that we will target.

Observe that our choice of constants satisfies the following inequalities. In fact, all but (8.3) are actually equalities, but we
do not need that fact.

2 · Δ · 𝛾 ≤ 𝜀(8.1)
2
𝜀
≤ 𝜁1(8.2)

𝜁1 < 𝜀 · 𝜁2(8.3)

3 · 𝜁1 · Δ ≤ 𝜀 · 1
2
· (1 − 𝜀) · 𝜁2(8.4)

(1 + 𝛾−1) · 𝜁2 ≤ 𝑘(8.5)

Lemma 8.2. Let (𝑇, 𝐿, 𝑐, 𝑟) be a rooted instance of WDTAP, let 𝑥 be a solution to (2.1) and let 𝐹′ be a feasible solution
to the instance we obtain after contracting all 𝜁1-covered arcs. Then we can, in polynomial time, compute a solution 𝐹 of
cost 𝑐(𝐹) ≤ 𝑐(𝐹′) + 𝜀 · 𝑐(𝑥) to the original instance.

Proof. We show how to, in polynomial time, compute a link set 𝐹′′ of cost 𝑐(𝐹′′) ≤ 𝜀 · 𝑐(𝑥) that covers all 𝜁1-covered
arcs. Let (𝑇 = (𝑉̄ , 𝐴̄), 𝐿̄, 𝑐, 𝑟) arise from (𝑇, 𝐿, 𝑐, 𝑟) by contracting all arcs that are not 𝜁1-covered. Then 𝑥 corresponds to
a solution 𝑥 of cost 𝑐(𝑥) = 𝑐(𝑥) to (2.1) for (𝑇, 𝐿̄, 𝑐) with the property that 𝑥(ℓ ∈ 𝐿̄ : 𝑎 ∈ −−→cov(ℓ) ≥ 𝜁1 for every 𝑎 ∈ 𝐴̄. In
particular, 𝑥′ B 1

𝜁1
· 𝑥 is a feasible solution to (2.1) for (𝑇, 𝐿̄, 𝑐) as well. Obtain 𝑥′′ from 𝑥′ by splitting every link in supp(𝑥′)

that is not an up- or down-link already at its apex. Then

𝑐(𝑥′′) ≤ 2 · 𝑐(𝑥′) = 2
𝜁1
· 𝑐(𝑥) ≤ 𝜀 · 𝑐(𝑥)

by (8.2). Note that (𝑇, supp(𝑥′′), 𝑐, 𝑟) is a willow (choosing 𝑈 = ∅), so we can, in polynomial time, compute an optimum
solution 𝐹̄ to (𝑇, supp(𝑥′′), 𝑐) of cost at most 𝑐(𝑥′′) ≤ 𝜀 · 𝑐(𝑥) by Theorem 5.3. The uncontracted links corresponding to 𝐹̄

yield the desired link set 𝐹′′. Setting 𝐹 = 𝐹′ ∪ 𝐹′′ concludes the proof.

In the following, it will be convenient to make the following assumption.

(8.6) There are no 𝜁1-covered arcs.

Lemma 8.2 essentially tells us that we can assume (8.6) at the cost of a cost increase by 𝜀 · 𝑐(𝑥).
Before stating Theorem 8.3, the more formal version of Theorem 4.2, we need to introduce the following notation:

• For a vertex 𝑣 ∈ 𝑉 \ {𝑟}, we let 𝑎𝑣 be the arc connecting 𝑣 to its parent.

• For a vertex 𝑣 ∈ 𝑉\{𝑟} such that 𝑎𝑣 is an up-arc, we define
−−−−−−→
viwidth(𝑣) B viwidth𝑢𝑝 (𝑣),

←−−−−−−
viwidth(𝑣) B viwidth𝑑𝑜𝑤𝑛 (𝑣),−→

𝐴 𝑣 B 𝐴𝑣 ∩ 𝐴𝑢𝑝 and
←−
𝐴 𝑣 B 𝐴𝑣 ∩ 𝐴𝑑𝑜𝑤𝑛.

• For a vertex 𝑣 such that 𝑎𝑣 is a down-arc, we let
−−−−−−→
viwidth(𝑣) B viwidth𝑑𝑜𝑤𝑛 (𝑣),

←−−−−−−
viwidth(𝑣) B viwidth𝑢𝑝 (𝑣),−→

𝐴 𝑣 B 𝐴𝑣 ∩ 𝐴𝑑𝑜𝑤𝑛 and
←−
𝐴 𝑣 B 𝐴𝑣 ∩ 𝐴𝑢𝑝 .
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Theorem 8.3. Let (𝑇, 𝐿, 𝑐, 𝑟) be an instance of WDTAP with cost ratio at most Δ and let 𝑥 be a solution to (2.1)
satisfying (8.6). We can, in polynomial time, compute a splitting 𝜎∗ of 𝐿 and a vertex set 𝑊∗ ⊆ 𝑉 with the following
properties:

(i) Let 𝑥∗ B split(𝑥, 𝜎∗). We have 𝑐(𝑥∗) ≤ (1 + 𝜀) · 𝑐(𝑥).

(ii) 𝑊∗ consists of up- and down-independent vertices with respect to supp(𝑥∗).

(iii) Let 𝐿′ arise from supp(𝑥∗) by splitting every 𝑊∗-cross-link at its apex. With respect to 𝐿′, we have the following:

(a)
−−−−−−→
viwidth(𝑣) ≤ 𝑘 for every 𝑣 ∈ 𝑉 .

(b)
←−−−−−−
viwidth(𝑟) ≤ 𝑘 and we have

←−−−−−−
viwidth(𝑣) ≤ 𝑘 for every 𝑣 ∈ 𝑉 \ {𝑟} such that 𝑎𝑣 is not 𝜁2-heavy (with respect to

𝑥∗).

Note that when saying that 𝐿′ arises from supp(𝑥∗) by splitting every 𝑊∗-cross-link at its apex, we mean the following:
There exists a splitting 𝜎 of 𝐿 such that 𝐿′ = supp(split(𝑥∗, 𝜎)) and such that for every 𝑊∗-cross-link ℓ, 𝜎(ℓ) consists of
up- and down-links only, i.e., ℓ has been split at its apex (and potentially at further vertices).

The rest of this section is dedicated to proving Theorem 8.3. Fix a rooted WDTAP instance (𝑇 = (𝑉, 𝐴), 𝐿, 𝑐, 𝑟) with
cost ratio at most Δ. By rescaling the costs, we may assume without loss of generality that 𝑐 : 𝐿 → [1,Δ]. To establish
Theorem 8.3, we will traverse the tree 𝑇 bottom-up, starting from the leaves and working our way up towards the root.
Whenever we encounter a vertex 𝑣 of high visible width, we will try to split links with one endpoint in 𝑇𝑣 and one endpoint
outside 𝑇𝑣 , rendering 𝑣 up- or down-independent. We introduce the following notation, which slightly differs from the one
used in Section 4.

Definition 8.4. Let 𝑣 ∈ 𝑉 \ {𝑟}. We say that a link ℓ = (𝑢, 𝑤) points into 𝑇𝑣 if 𝑤 ∈ 𝑈𝑣 \ {𝑣} and 𝑢 ∉ 𝑈𝑣 . We say that ℓ
points out of 𝑇𝑣 if 𝑢 ∈ 𝑈𝑣 \ {𝑣} and 𝑤 ∉ 𝑈𝑣 . We denote the set of links pointing into/ out of 𝑇𝑣 by 𝐿

↓
𝑣 and 𝐿

↑
𝑣 , respectively.

Proposition 8.5. If 𝐿↓𝑣 = ∅, then 𝑣 is up-independent. If 𝐿↑𝑣 = ∅, then 𝑣 is down-independent.

Proof. We only prove the first statement, the second one can be derived analogously. Assume 𝐿
↓
𝑣 = ∅ and let

ℓ = (𝑦, 𝑧) ∈ 𝐿. Assume −−→cov(ℓ) ∩ 𝐴𝑣 ∩ 𝐴𝑢𝑝 ≠ ∅. Then 𝑧 ∈ 𝑈𝑣 \ {𝑣}. As ℓ ∉ 𝐿
↑
𝑣 = ∅, 𝑧 ∈ 𝑈𝑣 . Hence, −−→cov(ℓ) ⊆ cov(ℓ) ⊆ 𝐴𝑣 .

We are now ready to define when an arc 𝑎𝑣 is “light” with respect to a solution to (2.1), allowing us to split all links covering
it in the right or in the wrong direction, respectively, without increasing the cost of the LP solution by too much. As outlined
in Section 4, we will charge the cost of the splitting to the coverage of visible arcs in the subtree hanging off 𝑣. In doing so, it
will be convenient to measure the coverage of these arcs with respect to the original LP solution 𝑥, whilst defining visibility
with respect to the support 𝐿′ of the split LP solution 𝑥′.

Definition 8.6. Let 𝛾 ∈ (0, 1), let 𝑥 be a solution to (2.1) and let 𝐿′ ⊆ 𝐿. Let 𝑣 ∈ 𝑉 \ {𝑟}. We say that 𝑎𝑣 is 𝛾-up-light
with respect to 𝑥 and 𝐿′ if

𝑥(𝐿↓𝑣) ≤ 𝛾 · 𝑥({ℓ ∈ 𝐿 : −−→cov(ℓ) ∩ 𝐴𝑢𝑝 ∩ 𝐴𝑣𝑖𝑠
𝑣 (𝐿′) ≠ ∅} \ 𝐿

↓
𝑣).

We say that 𝑎𝑣 is 𝛾-down-light with respect to 𝑥 and 𝐿′ if

𝑥(𝐿↑𝑣) ≤ 𝛾 · 𝑥({ℓ ∈ 𝐿 : −−→cov(ℓ) ∩ 𝐴𝑑𝑜𝑤𝑛 ∩ 𝐴𝑣𝑖𝑠
𝑣 (𝐿′) ≠ ∅} \ 𝐿

↑
𝑣).

Note that 𝐿′ is only used to specify visibility, however, we evaluate 𝑥 on all of 𝐿.
Next, we define the type of splitting operation that we will perform when encountering a light arc.

Definition 8.7. Let 𝑣 ∈ 𝑉 and let 𝐿′ ⊆ 𝐿. The splitting 𝜎𝑣,𝐿′ is defined as follows. For ℓ = (𝑢, 𝑤) ∈ 𝐿′ with 𝑣 ∈ in(𝑃ℓ),
we define 𝜎𝑣,𝐿′ (ℓ) = {(𝑢, 𝑣), (𝑣, 𝑤)}. For every other link ℓ, we define 𝜎𝑣,𝐿′ (ℓ) = {ℓ}.

Recall that in(𝑃ℓ) denotes the set of inner vertices of the path 𝑃ℓ . The splitting 𝜎𝑣,𝐿′ splits every link ℓ ∈ 𝐿′ with 𝑣 ∈ in(𝑃ℓ)
into two shadows; one starting and one ending in 𝑣.

The next proposition allows us to bound the cost increase incurred by successive splitting operations.

Proposition 8.8. Let 𝑥 be a solution to (2.1), let 𝑣 ∈ 𝑉 and let 𝐿′ ⊆ 𝐿. Let 𝑥′ B split(𝑥, 𝜎𝑣,𝐿′ ). Then

𝑐(𝑥′) ≤ 𝑐(𝑥) + Δ · 𝑥(𝐿′).
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Proof. This follows from Proposition 7.9 by observing that |𝜎𝑣,𝐿′ (ℓ) | ≤ 2 for ℓ ∈ 𝐿′ and |𝜎𝑣,𝐿′ (ℓ) | = 1 for ℓ ∉ 𝐿′.

The link sets that we will choose as 𝐿′ will be of the form 𝐿
↓
𝑣 and 𝐿

↑
𝑣 , respectively. The following lemma tells us that splitting

cannot increase the total 𝑥-value on these subsets. (It can, however, decrease it to zero if splits are performed at 𝑣.)

Proposition 8.9. Let 𝑥 be a solution to (2.1), let 𝜎 be a splitting of 𝑥 and let 𝑥′ B split(𝑥, 𝜎). Let 𝑣 ∈ 𝑉 \ {𝑟}.

• We have 𝑥′ (𝐿↓𝑣) ≤ 𝑥(𝐿↓𝑣) and 𝑥′ (𝐿↑𝑣) ≤ 𝑥(𝐿↑𝑣).

• If 𝜎 = 𝜎𝑤,𝐿′ and 𝑤 ≠ 𝑣 or 𝐿′ ∩ 𝐿
↓
𝑣 = ∅, then 𝑥′ (𝐿↓𝑣) = 𝑥(𝐿↓𝑣).

• If 𝜎 = 𝜎𝑤,𝐿′ and 𝑤 ≠ 𝑣 or 𝐿′ ∩ 𝐿
↑
𝑣 = ∅, then 𝑥′ (𝐿↑𝑣) = 𝑥(𝐿↑𝑣).

Proof. We only prove the statements for 𝐿
↓
𝑣 , the proof for 𝐿

↑
𝑣 is analogous. Let ℓ ∈ 𝐿. We make the following two

observations:

• If there is ℓ′ ∈ 𝜎(ℓ) ∩ 𝐿
↓
𝑣 , then ℓ ∈ 𝐿↓𝑣 because ℓ′ is a shadow of ℓ.

• For ℓ ∈ 𝐿↓𝑣 , we have |𝜎(ℓ) ∩ 𝐿
↓
𝑣 | ≤ 1 because 𝑎𝑣 ∈ cov(ℓ′) for every ℓ′ ∈ 𝜎(ℓ) ∩ 𝐿

↓
𝑣 , but the sets (cov(ℓ′))ℓ′∈𝜎 (ℓ ) are

pairwise disjoint. (Recall that cov(ℓ′) is the arc set of 𝑃ℓ′ ).

This yields
𝑥′ (𝐿↓𝑣) =

∑︁
ℓ′∈𝐿↓𝑣

∑︁
ℓ∈𝐿 :

ℓ′∈𝜎 (ℓ )

𝑥ℓ =
∑︁
ℓ′∈𝐿↓𝑣

∑︁
ℓ∈𝐿↓𝑣 :
ℓ′∈𝜎 (ℓ )

𝑥ℓ =
∑︁
ℓ∈𝐿↓𝑣

|𝜎(ℓ) ∩ 𝐿
↓
𝑣 | · 𝑥ℓ ≤ 𝑥(𝐿↓𝑣),

proving the first statement (for 𝐿↓𝑣). We note that if 𝜎 = 𝜎𝑤,𝐿′ and 𝑤 ≠ 𝑣 or 𝐿′ ∩ 𝐿
↓
𝑣 = ∅, then for every ℓ ∈ 𝐿

↓
𝑣 , there is

exactly one ℓ′ ∈ 𝜎(ℓ) with ℓ′ ∈ 𝐿↓𝑣 and we get equality above.

Algorithm 8.1 shows the splitting procedure that we employ in order to prove Theorem 8.3. We traverse the vertices in
𝑉 \ {𝑟} from the leaves towards the root. If 𝑎𝑣 is 𝛾-up-light, we split all links pointing into 𝑇𝑣 at 𝑣, if 𝑎𝑣 is 𝛾-down-light,
we split links pointing out of 𝑇𝑣 . Throughout the algorithm, we keep track of the current (split) LP solution 𝑥∗, the splitting
𝜎∗ with 𝑥∗ = split(𝑥, 𝜎∗) and the sets 𝑊𝑢𝑝 and 𝑊𝑑𝑜𝑤𝑛 of vertices 𝑣 at which links pointing into and out of 𝑇𝑣 have
been split, respectively. We write 𝜎id to denote the initial identity splitting given by 𝜎id (ℓ) = {ℓ} for every ℓ ∈ 𝐿. Note
that 𝑥 = split(𝑥, 𝜎id). Note that Algorithm 8.1 runs in polynomial time. We will show that the output (𝜎∗, 𝑥∗,𝑊∗) of

Algorithm 8.1 Light link splitting.
Input: solution 𝑥 to (2.1)
Output: splitting 𝜎∗, 𝑥∗ = split(𝑥, 𝜎∗), vertex set 𝑊∗

1: 𝜎∗ ← 𝜎id, 𝑥∗ ← 𝑥, 𝑊𝑢𝑝 ← ∅, , 𝑊𝑑𝑜𝑤𝑛 ← ∅
2: for 𝑣 ∈ 𝑉 \ {𝑟} in order of non-increasing distance to 𝑟 do
3: if 𝑎𝑣 is 𝛾-up-light (with respect to 𝑥 and supp(𝑥∗)) then
4: 𝜎∗ ← 𝜎

𝑣,𝐿
↓
𝑣
◦ 𝜎∗, 𝑥∗ ← split(𝑥∗, 𝜎

𝑣,𝐿
↓
𝑣
)

5: 𝑊𝑢𝑝 ← 𝑊𝑢𝑝 ∪ {𝑣}
6: end if
7: if 𝑎𝑣 is 𝛾-down-light (with respect to 𝑥 and supp(𝑥∗)) then
8: 𝜎∗ ← 𝜎

𝑣,𝐿
↑
𝑣
◦ 𝜎∗, 𝑥∗ ← split(𝑥∗, 𝜎

𝑣,𝐿
↑
𝑣
)

9: 𝑊𝑑𝑜𝑤𝑛 ← 𝑊𝑑𝑜𝑤𝑛 ∪ {𝑣}
10: end if
11: end for
12: return 𝜎∗, 𝑥∗, 𝑊∗ B 𝑊𝑢𝑝 ∪𝑊𝑑𝑜𝑤𝑛 ∪ {𝑟}

Algorithm 8.1 meets the requirements of Theorem 8.3. Our first goal is to establish Theorem 8.3 (i).
To this end, for 𝑣 ∈ 𝑉 \ {𝑟}, let 𝑥∗,𝑣 denote value of 𝑥∗ at the beginning of the iteration of the for-loop where 𝑣 is

considered. Let 𝑊𝑢𝑝 and 𝑊𝑑𝑜𝑤𝑛 denote the values of the respective sets when the algorithm terminates.
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Proposition 8.10. We have

𝑐(𝑥∗) ≤ 𝑐(𝑥)

+ Δ ·
∑︁

𝑣∈𝑊𝑢𝑝

𝛾 · 𝑥({ℓ ∈ 𝐿 : −−→cov(ℓ) ∩ 𝐴𝑢𝑝 ∩ 𝐴𝑣𝑖𝑠
𝑣 (supp(𝑥∗,𝑣)) ≠ ∅} \ 𝐿↓𝑣)

+ Δ ·
∑︁

𝑣∈𝑊𝑑𝑜𝑤𝑛

𝛾 · 𝑥({ℓ ∈ 𝐿 : −−→cov(ℓ) ∩ 𝐴𝑑𝑜𝑤𝑛 ∩ 𝐴𝑣𝑖𝑠
𝑣 (supp(𝑥∗,𝑣)) ≠ ∅} \ 𝐿↑𝑣).

Proof. By Propositions 8.8 and 8.9, we have

𝑐(𝑥∗) ≤ 𝑐(𝑥) + Δ · ©­«
∑︁

𝑣∈𝑊𝑢𝑝

𝑥∗,𝑣 (𝐿↓𝑣) +
∑︁

𝑣∈𝑊𝑑𝑜𝑤𝑛

𝑥∗,𝑣 (𝐿↑𝑣)
ª®¬ .

By Proposition 8.9, we know that 𝑥∗,𝑣 (𝐿↓𝑣) ≤ 𝑥(𝐿↓𝑣) and 𝑥∗,𝑣 (𝐿↑𝑣) ≤ 𝑥(𝐿↑𝑣) for all 𝑣 ∈ 𝑉 \ {𝑟}. The desired statement, hence,
follows from Definition 8.6.

To derive a good bound on the cost increase from Proposition 8.10, we need to make sure that a link ℓ does not appear in too
many of the sets {ℓ ∈ 𝐿 : −−→cov(ℓ)∩𝐴𝑢𝑝∩𝐴𝑣𝑖𝑠

𝑣 (supp(𝑥∗,𝑣)) ≠ ∅}\𝐿↓𝑣 and {ℓ ∈ 𝐿 : −−→cov(ℓ)∩𝐴𝑑𝑜𝑤𝑛∩𝐴𝑣𝑖𝑠
𝑣 (supp(𝑥∗,𝑣)) ≠ ∅}\𝐿↑𝑣 ,

respectively. The next lemma takes care of this.

Proposition 8.11. Let ℓ ∈ 𝐿.

• There is at most one vertex 𝑣 ∈ 𝑊𝑢𝑝 such that −−→cov(ℓ) ∩ 𝐴𝑢𝑝 ∩ 𝐴𝑣𝑖𝑠
𝑣 (supp(𝑥∗,𝑣)) ≠ ∅ and ℓ ∉ 𝐿

↓
𝑣 .

• There is at most one vertex 𝑣 ∈ 𝑊𝑑𝑜𝑤𝑛 such that −−→cov(ℓ) ∩ 𝐴𝑑𝑜𝑤𝑛 ∩ 𝐴𝑣𝑖𝑠
𝑣 (supp(𝑥∗,𝑣)) ≠ ∅ and ℓ ∉ 𝐿

↑
𝑣 .

Proof. We only prove the statement for 𝑣 ∈ 𝑊𝑢𝑝 , as the other one can be derived analogously. If there is no such vertex
𝑣 ∈ 𝑊𝑢𝑝 , there is nothing to show. Next, assume that there is at least one such vertex and let 𝑣0 be the first one considered
by the algorithm. Let ℓ = (𝑦, 𝑧). As ℓ covers an arc in 𝐴𝑢𝑝 ∩ 𝐴𝑣 , we have 𝑧 ∈ 𝑈𝑣 \ {𝑣}. As ℓ ∉ 𝐿

↓
𝑣 , 𝑦 ∈ 𝑈𝑣 . Hence,

−−→cov(ℓ) ⊆ cov(ℓ) ⊆ 𝐴𝑣 . As 𝑣0 ∈ 𝑊𝑢𝑝 , we know that every link in 𝐿
↓
𝑣 is split at 𝑣0 and after this, we have 𝑥∗ (𝐿↓𝑣0 ) = 0.

By Proposition 8.9, for every vertex 𝑣1 considered after 𝑣0, we also have 𝑥∗,𝑣1 (𝐿↓) = 0, i.e., supp(𝑥∗,𝑣1 ) ∩ 𝐿
↓
𝑣 = ∅. But

this tells us that no vertex 𝑣1 considered after 𝑣0 can see any arc in 𝐴𝑢𝑝 ∩ 𝐴𝑣 . Indeed, if 𝑣1 is considered after 𝑣0, then
𝑣1 ∉ 𝑈𝑣0 because every vertex in 𝑈𝑣0 \ {𝑣0} has a larger distance to 𝑟 than 𝑣0. If there were an arc 𝑎 ∈ 𝐴𝑢𝑝 ∩ 𝐴𝑣 visible
to 𝑣1 (w.r.t. supp(𝑥∗,𝑣1 )), then there were a link ℓ′ = (𝑦′, 𝑧′) ∈ supp(𝑥∗,𝑣1 ) such that 𝑎 ∈ −−→cov(ℓ′) and 𝑣1 ∈ in(𝑃ℓ′ ). In
particular, 𝑧′ ∈ 𝑈𝑣0 \ {𝑣0} and 𝑦′ ∉ 𝑈𝑣0 (as in(𝑃ℓ′ ) ⊆ 𝑈𝑣0 otherwise). So ℓ′ ∈ supp(𝑥∗,𝑣1 ) ∩ 𝐿

↓
𝑣 , a contradiction. Hence,

𝐴𝑣 ∩ 𝐴𝑢𝑝 ∩ 𝐴𝑣𝑖𝑠
𝑣1
(supp(𝑥∗,𝑣1 )) = ∅ for every 𝑣1 that is considered after 𝑣. As −−→cov(ℓ) ∩ 𝐴𝑢𝑝 ⊆ 𝐴𝑢𝑝 ∩ 𝐴𝑣 , this concludes the

proof.

We are now ready to prove Theorem 8.3 (i).

Lemma 8.12. 𝑐(𝑥∗) ≤ (1 + 𝜀) · 𝑐(𝑥).

Proof. We use Proposition 8.10 and that the sets {ℓ ∈ 𝐿 : −−→cov(ℓ) ∩ 𝐴𝑢𝑝 ∩ 𝐴𝑣𝑖𝑠
𝑣 (supp(𝑥∗,𝑣)) ≠ ∅} \ 𝐿↓𝑣 for 𝑣 ∈ 𝑊𝑢𝑝 and

{ℓ ∈ 𝐿 : −−→cov(ℓ) ∩ 𝐴𝑑𝑜𝑤𝑛 ∩ 𝐴𝑣𝑖𝑠
𝑣 (supp(𝑥∗,𝑣)) ≠ ∅} \ 𝐿↑𝑣 for 𝑣 ∈ 𝑊𝑑𝑜𝑤𝑛 are pairwise disjoint by Proposition 8.11. Hence,

Proposition 8.10 yields ∑︁
ℓ∈𝐿

𝑐(𝑥∗) ≤ 𝑐(𝑥) + 2 · Δ · 𝛾 · 𝑥(𝐿) ≤ 𝑐(𝑥) + 2 · Δ · 𝛾 · 𝑐(𝑥) ≤ (1 + 𝜀) · 𝑐(𝑥),

where we used 𝑐(ℓ) ≥ 1 for all ℓ ∈ 𝐿 for the second and (8.1) for the third inequality.

Next, we establish Theorem 8.3 (ii).

Lemma 8.13. For 𝑣 ∈ 𝑊𝑢𝑝 , we have 𝑥∗ (𝐿↓𝑣) = 0 and for 𝑣 ∈ 𝑊𝑑𝑜𝑤𝑛, we have 𝑥∗ (𝐿↑𝑣) = 0. In particular, every vertex in
𝑊∗ is up- or down-independent with respect to supp(𝑥∗).
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Proof. 𝑟 is both up- and down-independent since 𝐴 = 𝐴𝑟 . For 𝑣 ∈ 𝑊𝑢𝑝 , we have 𝑥∗ (𝐿↓𝑣) = 0 immediately after splitting
all links in 𝐿

↓
𝑣 at 𝑣. By Proposition 8.9, this property is preserved until the end, so supp(𝑥∗) ∩ 𝐿

↓
𝑣 = ∅. By Proposition 8.5,

𝑣 is up-independent. Analogously, we can establish that every vertex in 𝑊𝑑𝑜𝑤𝑛 is down-independent.

We are left with proving Theorem 8.3 (iii). Let 𝐿′ = supp(split(𝑥∗, 𝜎)) be obtained from supp(𝑥∗) by splitting all 𝑊∗-cross-
links at their apex.

Lemma 8.14. With respect to the link set 𝐿′, we have viwidth(𝑟) = 0, viwidth𝑢𝑝 (𝑣) = 0 for 𝑣 ∈ 𝑊𝑢𝑝 , and
viwidth𝑑𝑜𝑤𝑛 (𝑣) = 0 for 𝑣 ∈ 𝑊𝑑𝑜𝑤𝑛.

Proof. Every link ℓ with 𝑟 ∈ in(𝑃ℓ) is an 𝑟-cross-link. As 𝑟 ∈ 𝑊∗, there is no link in ℓ ∈ 𝐿′ with 𝑟 ∈ in(𝑃ℓ). Hence,
no arc is visible from 𝑟 and viwidth(𝑟) = 0.

Next, 𝑣 ∈ 𝑊𝑢𝑝 and let 𝑎 ∈ 𝐴𝑣 ∩ 𝐴𝑢𝑝 . We need to show that 𝑎 is not visible for 𝑣. Let ℓ = (𝑦, 𝑧) ∈ 𝐿′ be a
link with 𝑎 ∈ −−→cov(ℓ). Then 𝑧 ∈ 𝑈𝑣 \ {𝑣}. As we have observed in the proof of Lemma 8.13, supp(𝑥∗) ∩ 𝐿

↓
𝑣 = ∅. As

𝐿′ = supp(split(𝑥∗, 𝜎)), we also have 𝐿′ ∩ 𝐿
↓
𝑣 = ∅ by Proposition 8.9. Hence, 𝑦 ∈ 𝑈𝑣 , so apex(ℓ) ∈ 𝑈𝑣 . As 𝐿′ contains no

𝑣-cross-links, 𝑣 ∉ in(𝑃ℓ). The statement for 𝑣 ∈ 𝑊𝑑𝑜𝑤𝑛 can be derived analogously.

The following lemma concludes the proof of Theorem 8.3 (iii).
Lemma 8.15. Let 𝑣 ∈ 𝑉 \ {𝑟}.

• If viwidth𝑢𝑝 (𝑣) > 𝑘 with respect to 𝐿′, then 𝑥∗ (𝐿↓𝑣) > 𝜁2, and 𝑎𝑣 is a 𝜁2-heavy down-arc.

• If viwidth𝑑𝑜𝑤𝑛 (𝑣) > 𝑘 with respect to 𝐿′, then 𝑥∗ (𝐿↑𝑣) > 𝜁2, and 𝑎𝑣 is a 𝜁2-heavy up-arc.

Proof. We only prove the first statement, the second one can be derived analogously. Let 𝑣 ∈ 𝑉 \ {𝑟} with
viwidth𝑢𝑝 (𝑣) > 𝑘 . By Lemma 8.14, 𝑣 ∉ 𝑊𝑢𝑝 . We begin by showing the following claim.

Claim 8.16. 𝑥(𝐿↓𝑣) > 𝜁2.

Proof of claim. Assume towards a contradiction that 𝑥(𝐿↓𝑣) ≤ 𝜁2.
As 𝑣 ∉ 𝑊𝑢𝑝 , we know that

𝑥(𝐿↓𝑣) > 𝛾 · 𝑥({ℓ ∈ 𝐿 : −−→cov(ℓ) ∩ 𝐴𝑢𝑝 ∩ 𝐴𝑣𝑖𝑠
𝑣 (supp(𝑥∗,𝑣)) ≠ ∅} \ 𝐿↓𝑣).

As viwidth𝑢𝑝 (𝑣) > 𝑘 , let 𝑎1, . . . , 𝑎𝑘+1 ∈ 𝐴𝑣 be ancestor-free up-arcs that are visible for 𝑣 with respect to 𝐿′. As 𝐿′ arises
from supp(𝑥∗,𝑣) by splitting links, 𝑎1, . . . , 𝑎𝑘+1 are also visible for 𝑣 with respect to supp(𝑥∗,𝑣). This implies

𝑥(𝐿↓𝑣) > 𝛾 · 𝑥({ℓ ∈ 𝐿 : −−→cov(ℓ) ∩ {𝑎1, . . . , 𝑎𝑘+1} ≠ ∅} \ 𝐿↓𝑣),

which yields

𝑥({ℓ ∈ 𝐿 : −−→cov(ℓ) ∩ {𝑎1, . . . , 𝑎𝑘+1} ≠ ∅}) ≤ 𝑥({ℓ ∈ 𝐿 : −−→cov(ℓ) ∩ {𝑎1, . . . , 𝑎𝑘+1} ≠ ∅} \ 𝐿↓𝑣) + 𝑥(𝐿↓𝑣)

< (1 + 𝛾−1) · 𝑥(𝐿↓𝑣) ≤ (1 + 𝛾−1) · 𝜁2.

On the other hand, as the arcs 𝑎1, . . . , 𝑎𝑘+1 are ancestor-free, there is no link ℓ covering two of them. Using that 𝑥 is a
solution to (2.1), this implies

𝑘 + 1 ≤
𝑘+1∑︁
𝑖=1

𝑥({ℓ : 𝑎𝑖 ∈ −−→cov(ℓ)}) = 𝑥({ℓ ∈ 𝐿 : −−→cov(ℓ) ∩ {𝑎1, . . . , 𝑎𝑘+1} ≠ ∅}) ≤ (1 + 𝛾−1) · 𝜁2
(8.5)
< 𝑘 + 1,

a contradiction.

As 𝑣 ∉ 𝑊𝑢𝑝 , the only splitting at 𝑣 that we might perform in the course of Algorithm 8.1 is 𝜎
𝑣,𝐿

↑
𝑣

(in case 𝑣 ∈ 𝑊𝑑𝑜𝑤𝑛).

Using that 𝐿↓𝑣 ∩ 𝐿
↑
𝑣 = ∅, by Proposition 8.9, we can infer that 𝑥∗ (𝐿↓𝑣) = 𝑥(𝐿↓𝑣) > 𝜁2. Finally, we observe that 𝑎𝑣 must be a

down-arc. Indeed, if 𝑎𝑣 were an up-arc, then every link in 𝐿
↓
𝑣 would cover 𝑎𝑣 , implying that 𝑎𝑣 would be 𝜁2-covered for 𝑥

(and 𝑥∗). However, this contradicts (8.6) and (8.3). Hence, 𝑎𝑣 is a 𝜁2-heavy down-arc.

This concludes the proof of Theorem 8.3.
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9 Components and cores: handling heavy coverage in the wrong direction For this section, we again fix a rooted
WDTAP instance (𝑇, 𝐿, 𝑐, 𝑟) with cost ratio at most Δ and a solution 𝑥 to (2.1) satisfying (8.6). Moreover, let 𝜎∗, 𝑥∗ and 𝑊∗

be as given by Theorem 8.3. The goal of this section is to prove Theorem 9.7, which allows us to establish strong structural
properties with respect to the 𝜁2-heavy arcs (for 𝑥∗). To state Theorem 9.7, we require the following definitions.

Definition 9.1. An up-component (down-component) is a (weakly) connected component of the digraph (𝑉, 𝐴𝑢𝑝)
((𝑉, 𝐴𝑑𝑜𝑤𝑛)). We denote the collection of up- and down-components by C𝑢𝑝 and C𝑑𝑜𝑤𝑛, respectively, and we let
C B C𝑢𝑝 ∪ C𝑑𝑜𝑤𝑛. We say that 𝐶 is a component if 𝐶 is an up- or a down-component, i.e., 𝐶 ∈ C. For a component 𝐶, we
let the root 𝑟𝐶 of 𝐶 be the vertex of 𝐶 closest to the root 𝑟 of 𝑇 .

Definition 9.2. Let 𝐶 = (𝑉 ′, 𝐴′) be a component. We call an arc 𝑎′ ∈ 𝐴′ a base arc if 𝑎′ is 𝜁2-heavy (w.r.t. 𝑥∗) and
moreover, no arc of 𝐶 below 𝑎′ has this property. We denote the set of base arcs of 𝐶 by 𝐵𝐶 .

Proposition 9.3. For every component 𝐶, 𝐵𝐶 is ancestor-free. □

Corollary 9.4. Let 𝐶 ∈ C and let 𝑏, 𝑏′ ∈ 𝐵𝐶 with 𝑏 ≠ 𝑏′. Then {ℓ ∈ 𝐿 : 𝑏 ∈ ←−−cov(ℓ)} ∩ {ℓ ∈ 𝐿 : 𝑏′ ∈ ←−−cov(ℓ)} = ∅.
Proof. Let ℓ ∈ 𝐿. All arcs in←−−cov(ℓ) ∩ 𝐴𝑢𝑝 , as well as all arcs in←−−cov(ℓ) ∩ 𝐴𝑑𝑜𝑤𝑛, share a pairwise ancestral relationship.

Then fact that 𝐵𝐶 is an ancestor-free set are up-arcs, if 𝐶 ∈ C𝑢𝑝 , and an ancestor-free set of down-arcs, if 𝐶 ∈ C𝑑𝑜𝑤𝑛,
concludes the proof.

Definition 9.5. Let 𝐶 be a component. The core 𝐶̊ of 𝐶 consists of the union of the paths connecting the
(lower vertices of) the base arcs to 𝑟𝐶 , if 𝐵𝐶 ≠ ∅, and is empty otherwise. Let C̊𝑢𝑝 B {𝐶̊ : 𝐶 ∈ C𝑢𝑝 , 𝐵𝐶 ≠ ∅},
C̊𝑑𝑜𝑤𝑛 B {𝐶̊ : 𝐶 ∈ C𝑑𝑜𝑤𝑛, 𝐵𝐶 ≠ ∅} and C̊ B C̊𝑢𝑝 ∪ C̊𝑑𝑜𝑤𝑛 be the collection of all non-empty cores.

For a core 𝐶̊ ∈ C̊, we call 𝐵𝐶̊ B 𝐵𝐶 the set of base arcs of 𝐶̊.

Proposition 9.6. Let 𝑣 ∈ 𝑉 \ {𝑟} such that 𝑎𝑣 is 𝜁2-heavy, and let 𝐶 ∈ C be the component containing 𝑎𝑣 . Then 𝑎𝑣 is
contained in 𝐶̊.

Proof. This is clear if 𝑎𝑣 ∈ 𝐵𝐶 . Otherwise, there exists a base arc 𝑏 ∈ 𝐵𝐶 such that 𝑎𝑣 lies on the path from the bottom
vertex of 𝑏 to 𝑟𝐶 . Hence, 𝑎𝑣 is contained in 𝐶̊.

We are now ready to state the main theorem of this section.
Theorem 9.7. We can, in polynomial time, compute a splitting 𝜎∗∗ of 𝐿 and 𝑥∗∗ B split(𝑥∗, 𝜎∗∗) = split(𝑥, 𝜎∗∗ ◦ 𝜎∗)

such that the following properties hold:

(9.7.1) 𝑐(𝑥∗∗) ≤ (1 + 𝜀)2 · 𝑐(𝑥)

(9.7.2) Let 𝐶 ∈ C̊. There is no ℓ ∈ supp(𝑥∗∗) with −−→cov(ℓ) ∩ 𝐴(𝐶) ≠ ∅ and←−−cov(ℓ) ∩ 𝐴(𝐶) ≠ ∅.

(9.7.3) Let 𝐶 ∈ C̊𝑢𝑝 . Then supp(𝑥∗∗) ∩ 𝐿
↑
𝑟𝐶 = ∅ and for every ℓ ∈ supp(𝑥∗∗) ∩ 𝐿

↓
𝑟𝐶 , cov(ℓ) ∩ 𝐴(𝐶) = ∅.

Let 𝐶 ∈ C̊𝑑𝑜𝑤𝑛. Then supp(𝑥∗∗) ∩ 𝐿
↓
𝑟𝐶 = ∅ and for every ℓ ∈ supp(𝑥∗∗) ∩ 𝐿

↑
𝑟𝐶 , cov(ℓ) ∩ 𝐴(𝐶) = ∅.

(9.7.4) Let 𝐶 ∈ C̊ and let ℓ ∈ supp(𝑥∗∗). If −−→cov(ℓ) contains an arc of 𝐶 incident to 𝑟𝐶 , then 𝑟𝐶 is an endpoint of ℓ.

Before we move on to proving this theorem, we state an application of it.
Corollary 9.8. Let 𝜎 be a splitting of 𝐿 and let ℓ ∈ supp(split(𝑥∗∗, 𝜎)). Let 𝐶 ∈ C̊ such that cov(ℓ) ∩ 𝐴(𝐶) ≠ ∅.

Then apex(ℓ) ∈ 𝑉 (𝐶).
Proof. We only consider the case where 𝐶 ∈ C̊𝑢𝑝 , the case 𝐶 ∈ C̊𝑑𝑜𝑤𝑛 can be handled analogously. By (9.7.3)

and Proposition 8.9, we know that supp(split(𝑥∗∗, 𝜎)) ∩ 𝐿
↑
𝑟𝐶 = ∅, so ℓ ∉ 𝐿

↑
𝑟𝐶 . We further show that ℓ ∉ 𝐿

↓
𝑟𝐶 .

As ℓ ∈ supp(split(𝑥∗∗, 𝜎)), there is ℓ′ ∈ supp(𝑥∗∗) with ℓ ∈ 𝜎(ℓ′). Then ℓ is a shadow of ℓ′, implying that also
cov(ℓ′) ∩ 𝐴(𝐶) ≠ ∅. By (9.7.3), ℓ′ is neither contained in 𝐿

↑
𝑟𝐶 nor in 𝐿

↓
𝑟𝐶 , hence, both endpoints of ℓ′ must be contained

in 𝑈𝑟𝐶 (because also cov(ℓ′) ∩ 𝐴𝑟𝐶 ⊇ cov(ℓ′) ∩ 𝐴(𝐶) ≠ ∅). As ℓ is a shadow of ℓ′, both endpoints of ℓ are contained
in 𝑈𝑟𝐶 as well. As there is 𝑎 ∈ 𝐴(𝐶) ∩ cov(ℓ), apex(ℓ) must be an ancestor of apex(𝑎), but a descendant of 𝑟𝐶 . Hence,
apex(ℓ) ∈ 𝑉 (𝐶).
The rest of this section is dedicated to the proof of Theorem 9.7. We first conduct a structural analysis of links in supp(𝑥∗)
violating properties (9.7.2), (9.7.3) and (9.7.4). Then, we describe a link splitting procedure (Algorithm 9.1) designed to
make sure that the support of the resulting solution 𝑥∗∗ does not contain any of the “problematic links”. Finally, we explain
how to charge the cost of the splitting against the total costs of the links “heavily covering base arcs in the wrong direction”.
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9.1 Structural analysis of problematic links For every 𝐶 ∈ C̊, fix an ordering 𝐵𝐶 = {𝑏𝐶1 , . . . , 𝑏
𝐶
𝑡𝐶
} of its base arcs.

We introduce a decomposition of the cores into pairwise arc-disjoint paths, that will allow us to characterize the structure of
the “problematic links” and guide our charging procedure when splitting them.

Definition 9.9 (trunk decomposition). Let 𝐶 ∈ C̊. The trunk decomposition of 𝐶 is the decomposition of 𝐶 into
arc-disjoint paths 𝑃𝐶

1 , . . . , 𝑃
𝐶
𝑡𝐶

defined as follows:

• 𝑃𝐶
1 is the path connecting the bottom vertex of 𝑏𝐶1 to 𝑟𝐶 .

• For 𝑖 = 2, . . . , 𝑡𝐶 , let 𝑃′
𝑖

be the path connecting the bottom vertex of 𝑏𝐶
𝑖

to 𝑟𝐶 and let 𝑃𝐶
𝑖

be the prefix of 𝑃′
𝑖

ending at
the first vertex in 𝑉 (𝑃′

𝑖
) ∩⋃𝑖−1

𝑗=1 𝑉 (𝑃𝐶
𝑗
).

The paths (𝑃𝐶
𝑖
)𝑡𝐶
𝑖=1 are called the trunks of the trunk decomposition.

Note that we can compute C̊𝑢𝑝 , C̊𝑑𝑜𝑤𝑛 and a trunk decomposition of every core, in polynomial time: following the definition,
each step can be done in linear time and the total number of base arcs is bounded by the total number of arcs.

𝑟𝐶

𝑏𝐶3

𝑏𝐶1

𝑏𝐶2

𝑟𝐶 = 𝑣𝐶1 = 𝑣𝐶3

𝑣𝐶2

𝑏𝐶3

𝑏𝐶1

𝑏𝐶2

Figure 9.1: An up-component 𝐶 with root 𝑟𝐶 is shown on the left. The 𝜁2-heavy arcs are drawn in bold with 𝑏𝐶1 , 𝑏𝐶2 and 𝑏𝐶3
being the base arcs. The core of 𝐶 is shown on the right, together with its trunk decomposition, indicated by colors. Here,
𝑃𝐶

1 (blue) is the parent trunk of 𝑃𝐶
2 (green). The sibling arc of 𝑃𝐶

2 is 𝑏𝐶1 .

Definition 9.10. For a trunk 𝑃𝐶
𝑖

, we denote its top endpoint by 𝑣𝐶
𝑖

and its top arc by 𝑎𝐶
𝑖

.

Definition 9.11. Let 𝐶 ∈ C̊ and let (𝑃𝐶
𝑖
)𝑡𝐶
𝑖=1 be the trunks of the trunk decomposition of 𝐶. For 𝑖 ∈ {1, . . . , 𝑡𝐶 } with

𝑣𝐶
𝑖
≠ 𝑟𝐶 , we define the parent trunk of 𝑃𝐶

𝑖
to be the trunk 𝑃𝐶

𝑗
containing 𝑎𝑣𝐶

𝑖
. Note that as 𝐵𝐶 is ancestor-free, 𝑣𝐶

𝑖
cannot

be the bottom endpoint of 𝑃𝐶
𝑗
. We further call the arc of 𝑃𝐶

𝑗
connecting to 𝑣𝐶

𝑖
from below the sibling arc of 𝑃𝐶

𝑖
and denote

it by 𝑠𝐶
𝑖

.

We are now ready to analyze the structure of links that violate the condition in (9.7.2).

Proposition 9.12. Let 𝐶 ∈ C̊ and let ℓ ∈ 𝐿 with −−→cov(ℓ) ∩ 𝐴(𝐶) ≠ ∅ and←−−cov(ℓ) ∩ 𝐴(𝐶) ≠ ∅. Then:

(9.12.1) ℓ is neither an up- nor a down-link, i.e., apex(ℓ) ∈ in(𝑃ℓ).

(9.12.2) There is a trunk 𝑃𝐶
𝑖

such that apex(ℓ) = 𝑣𝐶
𝑖

and either 𝑎𝐶
𝑖
∈ −−→cov(ℓ), or 𝑣𝐶

𝑖
≠ 𝑟𝐶 and 𝑠𝐶

𝑖
∈ −−→cov(ℓ).

Proof. The fact that 𝐴(𝐶) either only contains up-arcs or only down-arcs implies that for an up- or down-link ℓ,
−−→cov(ℓ) ∩ 𝐴(𝐶) = ∅ or←−−cov(ℓ) ∩ 𝐴(𝐶) = ∅. This establishes (9.12.1). To simplify notation, we prove (9.12.2) only for the
case where 𝐶 ∈ C̊𝑢𝑝; the case 𝐶 ∈ C̊𝑑𝑜𝑤𝑛 can be handled analogously. Let ℓ = (𝑢, 𝑣), let 𝑎 ∈ −−→cov(ℓ) ∩ 𝐴(𝐶) and let
𝑎′ ∈ ←−−cov(ℓ) ∩ 𝐴(𝐶). Then 𝑎 lies on the apex(ℓ)-𝑣-path in 𝑇 and 𝑎′ lies on the 𝑢-apex(ℓ)-path in 𝑇 . In particular, apex(ℓ)
is the lowest common ancestor of (the top vertices of) 𝑎 and 𝑎′, and, as 𝐶 is connected, apex(ℓ) ∈ 𝑉 (𝐶). Let 𝑎0 and 𝑎′0 be
the top arcs of the 𝑣-apex(ℓ)-path and the 𝑢-apex(ℓ)-path, respectively. Then 𝑎0 ∈ −−→cov(ℓ) and 𝑎′0 ∈

←−−cov(ℓ). Let 𝑃𝐶
𝑗

be the
trunk containing 𝑎0. If 𝑣𝐶

𝑗
= apex(ℓ), we let 𝑃𝐶

𝑖
B 𝑃𝐶

𝑗
. Otherwise, apex(ℓ) ≠ 𝑟𝐶 and 𝑎apex(ℓ ) ∈ 𝐴(𝑃𝐶

𝑗
). In this case, we

let 𝑃𝐶
𝑖

be the trunk containing 𝑎′0. Then 𝑣𝐶
𝑖
= apex(ℓ) and 𝑎0 = 𝑠𝐶

𝑖
is the sibling arc of 𝑃𝐶

𝑖
.
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The next two propositions help us to understand the structure of links violating the conditions in (9.7.3).

Proposition 9.13.

• Let 𝐶 ∈ C̊𝑢𝑝 and let ℓ ∈ 𝐿↑𝑟𝐶 . Then 𝑟𝐶 ≠ 𝑟, 𝑟𝐶 ∈ in(𝑃ℓ) and 𝑎𝑟𝐶 ∈
−−→cov(ℓ).

• Let 𝐶 ∈ C̊𝑑𝑜𝑤𝑛 and let ℓ ∈ 𝐿↓𝑟𝐶 . Then 𝑟𝐶 ≠ 𝑟 , 𝑟𝐶 ∈ in(𝑃ℓ) and 𝑎𝑟𝐶 ∈
−−→cov(ℓ).

Proof. We only prove the first statement; the second one follows analogously. Let 𝐶 ∈ C̊𝑢𝑝 and let ℓ = (𝑢, 𝑣) ∈ 𝐿
↑
𝑟𝐶 .

Then 𝑢 ∈ 𝑈𝑟𝐶 \ {𝑟𝐶 } and 𝑣 ∈ 𝑉 \𝑈𝑟𝐶 , so 𝑟𝐶 ∈ in(𝑃ℓ). Moreover, apex(ℓ) is a strict ancestor of 𝑟𝐶 (implying 𝑟𝐶 ≠ 𝑟) and
𝑎𝑟𝐶 appears on the 𝑢-apex(ℓ)-path in 𝑇 . As 𝐶 ∈ C̊𝑢𝑝 , 𝑎𝑟𝐶 is a down-arc, so 𝑎𝑟𝐶 ∈

−−→cov(ℓ).

Proposition 9.14.

• Let 𝐶 ∈ C̊𝑢𝑝 and let ℓ ∈ 𝐿
↓
𝑟𝐶 with cov(ℓ) ∩ 𝐴(𝐶) ≠ ∅. Then 𝑟𝐶 ∈ in(𝑃ℓ) and there is a trunk 𝑃𝐶

𝑖
with 𝑣𝐶

𝑖
= 𝑟𝐶 and

𝑎𝐶
𝑖
∈ −−→cov(ℓ).

• Let 𝐶 ∈ C̊𝑑𝑜𝑤𝑛 and let ℓ ∈ 𝐿↑𝑟𝐶 with cov(ℓ) ∩ 𝐴(𝐶) ≠ ∅. Then 𝑟𝐶 ∈ in(𝑃ℓ) and there is a trunk 𝑃𝐶
𝑖

with 𝑣𝐶
𝑖
= 𝑟𝐶 and

𝑎𝐶
𝑖
∈ −−→cov(ℓ).

Proof. Again, we only prove the first statement. Let 𝐶 ∈ C̊𝑢𝑝 and let ℓ = (𝑢, 𝑣) ∈ 𝐿
↓
𝑟𝐶 with cov(ℓ) ∩ 𝐴(𝐶) ≠ ∅.

Then 𝑣 ∈ 𝑈𝑟𝐶 \ {𝑟𝐶 } and 𝑢 ∉ 𝑈𝑟𝐶 . In particular, 𝑟𝐶 ∈ in(𝑃ℓ) and moreover, apex(ℓ) is a strict ancestor of 𝑟𝐶 . Let
𝑎 ∈ cov(ℓ) ∩ 𝐴(𝐶). Then 𝑎 lies on the 𝑣-𝑟𝐶 -path in 𝑇 . Let 𝑎′ be the last arc of this path. As 𝐶 is connected, 𝑎′ ∈ 𝐴(𝐶), so
there is a trunk 𝑃𝐶

𝑖
containing 𝑎′. As 𝑎′ is incident to 𝑟𝐶 , 𝑎′ = 𝑎𝐶

𝑖
and 𝑣𝐶

𝑖
= 𝑟𝐶 . Finally, as 𝐶 ∈ C̊𝑢𝑝 , 𝑎𝐶

𝑖
∈ 𝐴𝑢𝑝 . As 𝑎𝐶

𝑖
lies

on the 𝑣-apex(ℓ)-path in 𝑇 , 𝑎𝐶
𝑖
∈ −−→cov(ℓ).

Propositions 9.12 to 9.14 and (9.7.4) motivate the splitting procedure presented in the following section.

9.2 The splitting algorithm We obtain 𝜎∗∗ and 𝑥∗∗ = split(𝑥∗, 𝜎∗∗) via Algorithm 9.1.

Algorithm 9.1 Core link splitting.
Input: solution 𝑥∗ to (2.1)
Output: splitting 𝜎∗∗ of 𝐿, solution 𝑥∗∗ = split(𝑥∗, 𝜎∗∗) to (2.1)

1: 𝜎∗∗ ← 𝜎id, 𝑥∗∗ ← 𝑥∗

2: for 𝐶 ∈ C̊ do
3: 𝐿′ ← {ℓ ∈ 𝐿 : 𝑎𝑟𝐶 ∈

−−→cov(ℓ)}
4: 𝜎∗∗ ← 𝜎𝑟𝐶 ,𝐿′ ◦ 𝜎∗∗, 𝑥∗∗ ← split(𝑥∗∗, 𝜎𝑟𝐶 ,𝐿′ )
5: for 𝑖 ← 1 to 𝑡𝐶 do
6: 𝐿′ ← {ℓ ∈ 𝐿 : 𝑎𝐶

𝑖
∈ −−→cov(ℓ)}

7: 𝜎∗∗ ← 𝜎𝑣𝐶
𝑖
,𝐿′ ◦ 𝜎∗∗, 𝑥∗∗ ← split(𝑥∗∗, 𝜎𝑣𝐶

𝑖
,𝐿′ )

8: if 𝑣𝐶
𝑖
≠ 𝑟𝐶 then

9: 𝐿′ ← {ℓ ∈ 𝐿 : 𝑠𝐶
𝑖
∈ −−→cov(ℓ)}

10: 𝜎∗∗ ← 𝜎𝑣𝐶
𝑖
,𝐿′ ◦ 𝜎∗∗, 𝑥∗∗ ← split(𝑥∗∗, 𝜎𝑣𝐶

𝑖
,𝐿′ )

11: end if
12: end for
13: end for
14: return 𝜎∗∗, 𝑥∗∗

Note that Algorithm 9.1 runs in polynomial time. The following technical claim is useful to further analyze Algorithm 9.1.

Proposition 9.15. Let 𝑎 ∈ 𝐴 and let 𝑢 be an endpoint of 𝑎. Let 𝑥 be a solution to (2.1) such that for every ℓ ∈ supp(𝑥)
with 𝑎 ∈ −−→cov(ℓ), 𝑢 is an endpoint of ℓ.

Let 𝑣 ∈ 𝑉 , 𝐿′ ⊆ 𝐿 and let 𝑥′ B split(𝑥, 𝜎𝑣,𝐿′ ). Then for every ℓ ∈ supp(𝑥′) with 𝑎 ∈ −−→cov(ℓ), 𝑢 is an endpoint of ℓ.

Proof. Let ℓ ∈ supp(𝑥′) with 𝑎 ∈ −−→cov(ℓ). If ℓ ∈ supp(𝑥), the statement follows from our assumption on 𝑥. Otherwise,
there is ℓ′ ∈ 𝐿′ ∩ supp(𝑥) such that ℓ is a shadow of ℓ′ with 𝑎 ∈ −−→cov(ℓ). Then also 𝑎 ∈ −−→cov(ℓ′), so 𝑢 is an endpoint of ℓ′.
As 𝑢 is an endpoint of ℓ′ and 𝑎, ℓ is a shadow of ℓ′ and 𝑎 ∈ cov(ℓ), 𝑢 must be an endpoint of ℓ as well.
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Proposition 9.16. The solution 𝑥∗∗ computed by Algorithm 9.1 satisfies (9.7.2).

Proof. Let 𝐶 ∈ C̊ and let 𝑃𝐶
𝑖

be a trunk of 𝐶. We know that for every link ℓ ∈ supp(𝑥∗∗) with 𝑎𝐶
𝑖
∈ −−→cov(ℓ), 𝑣𝐶

𝑖
is

an endpoint of ℓ because this property holds immediately after line 7 of Algorithm 9.1 is executed (for 𝐶 and 𝑖) and it is
preserved by later splits by Proposition 9.15.

If 𝑟𝐶
𝑖

≠ 𝑟𝐶 , we further know that for every link ℓ ∈ supp(𝑥∗∗) with 𝑠𝐶
𝑖
∈ −−→cov(ℓ), 𝑣𝐶

𝑖
is an endpoint of ℓ because this

property holds immediately after line 10 of Algorithm 9.1 is executed (for 𝐶 and 𝑖) and it is preserved by later splits by
Proposition 9.15.

By Proposition 9.12, (9.7.2) is satisfied.

Proposition 9.17. The solution 𝑥∗∗ computed by Algorithm 9.1 satisfies (9.7.3).

Proof. We only prove the statement for 𝐶 ∈ C̊𝑢𝑝; the case 𝐶 ∈ C̊𝑑𝑜𝑤𝑛 can be handled analogously.
Let 𝐶 ∈ C̊𝑢𝑝 with 𝑟𝐶 ≠ 𝑟 (otherwise, 𝐿↑𝑟𝐶 = ∅ and 𝐿

↓
𝑟𝐶 = ∅ and there is nothing to show). We know that every link

ℓ ∈ supp(𝑥∗∗) with 𝑎𝑟𝐶 ∈
−−→cov(ℓ) has 𝑟𝐶 as an endpoint because this property holds immediately after line 4 of Algorithm 9.1

is executed for 𝐶 and it is preserved by later splits by Proposition 9.15. By Proposition 9.13, supp(𝑥∗∗) ∩ 𝐿
↑
𝑟𝐶 = ∅.

Let 𝑃𝐶
𝑖

be a trunk of 𝐶 with 𝑣𝐶
𝑖
= 𝑟𝐶 . We know that for every ℓ ∈ supp(𝑥∗∗) with 𝑎𝐶

𝑖
∈ −−→cov(ℓ), 𝑣𝐶

𝑖
= 𝑟𝐶 is an endpoint

of ℓ because this property holds immediately after line 7 of Algorithm 9.1 is executed (for 𝐶 and 𝑖) and it is preserved by
later splits by Proposition 9.15. By Proposition 9.14, for every ℓ ∈ supp(𝑥∗∗) ∩ 𝐿

↓
𝑟𝐶 , cov(ℓ) ∩ 𝐴(𝐶) = ∅.

Proposition 9.18. The solution 𝑥∗∗ computed by Algorithm 9.1 satisfies (9.7.4).

Proof. Let 𝐶 ∈ C̊ and let 𝑎 ∈ 𝐴(𝐶) be an arc incident to 𝑟𝐶 . Then 𝑎 is the top arc of some trunk of 𝐶 ending in 𝑟𝐶 ,
i.e., there is 𝑖 ∈ {1, . . . , 𝑡𝐶 } such that 𝑎 = 𝑎𝐶

𝑖
and 𝑣𝐶

𝑖
= 𝑟𝐶 . Now, every link ℓ ∈ supp(𝑥∗∗) with 𝑎 ∈ −−→cov(ℓ) has 𝑟𝐶 as an

endpoint because this property holds immediately after line 7 of Algorithm 9.1 is executed for 𝑖 and 𝐶, and it is preserved
by later splits by Proposition 9.15.

To conclude the proof of Theorem 9.7, it remains to establish (9.7.1), which is the goal of the following section.

9.3 Bounding the cost of the splitting In order to bound the costs of the splitting operations performed in
Algorithm 9.1, we first establish a lower bound on the total cost of 𝑥∗. Lemma 9.19 allows us to relate the total 𝑥∗-
value on links who have their apex in a core 𝐶 to the number 𝑡𝐶 of base arcs of 𝐶. Corollary 9.21 then gives a lower bound
on the cost of 𝑥∗ in terms of the total number of base arcs in all cores. For the proof of Lemma 9.19, we observe that since
there are no 𝜁1-covered arcs with respect to 𝑥, Proposition 7.5 implies that

(9.1) there are no 𝜁1-covered arcs with respect to 𝑥∗.

Lemma 9.19. Let 𝐶 ∈ C̊. Then 𝑥∗ ({ℓ ∈ 𝐿 : apex(ℓ) ∈ 𝑉 (𝐶)}) ≥ (1 − 𝜀) · 𝜁2 · 𝑡𝐶 .

Proof. For 𝑖 ∈ {1, . . . , 𝑡𝐶 }, let 𝐿𝑖 B {ℓ ∈ 𝐿 : 𝑏𝐶
𝑖
∈ ←−−cov(ℓ)}. By Corollary 9.4, the sets (𝐿𝑖)𝑡𝐶𝑖=1 are pairwise disjoint.

Moreover, as every base arc is 𝜁2-heavy, 𝑥∗ (𝐿𝑖) ≥ 𝜁2 for every 𝑖 ∈ {1, . . . , 𝑡𝐶 }.
Claim 9.20. Let 𝑖 ∈ {1, . . . , 𝑡𝐶 } and let ℓ ∈ 𝐿𝑖 . If apex(ℓ) ∉ 𝑉 (𝐶), then 𝑟𝐶 ≠ 𝑟 and 𝑎𝑟𝐶 ∈

−−→cov(ℓ).
Proof of claim. To simplify notation, we assume that 𝐶 ∈ C̊𝑢𝑝; the case 𝐶 ∈ C̊𝑑𝑜𝑤𝑛 can be handled analogously. Let

ℓ = (𝑢, 𝑣). As 𝑏𝐶
𝑖
∈ ←−−cov(ℓ), the bottom vertex 𝑤 of 𝑏𝐶

𝑖
is an ancestor of 𝑢 and apex(ℓ) is strict ancestor of 𝑤. If apex(ℓ)

appears on the 𝑤-𝑟𝐶 -path in 𝑇 , then apex(ℓ) ∈ 𝑉 (𝐶). Otherwise, apex(ℓ) is a strict ancestor of 𝑟𝐶 and in particular, 𝑟𝐶 ≠ 𝑟.
Moreover, 𝑎𝑟𝐶 is a down-arc that appears on the 𝑢-apex(ℓ)-path in 𝑇 , implying 𝑎𝑟𝐶 ∈

−−→cov(ℓ).

By the claim, if 𝑟 = 𝑟𝐶 , then

𝑥∗ ({ℓ ∈ 𝐿 : apex(ℓ) ∈ 𝑉 (𝐶)}) ≥
𝑡𝐶∑︁
𝑖=1

𝑥∗ (𝐿𝑖) ≥ 𝑡𝐶 · 𝜁2.

Next, assume that 𝑟 ≠ 𝑟𝐶 . The claim yields

𝑥∗ ({ℓ ∈ 𝐿 : apex(ℓ) ∈ 𝑉 (𝐶)}) ≥
𝑡𝐶∑︁
𝑖=1

𝑥∗ (𝐿𝑖) − 𝑥∗ ({ℓ ∈ 𝐿 : 𝑎𝑟𝐶 ∈
−−→cov(ℓ)})

(9.1)
> 𝑡𝐶 · 𝜁2 − 𝜁1

(8.3)
> (1 − 𝜀) · 𝜁2 · 𝑡𝐶 .
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Corollary 9.21. We have 𝑐(𝑥∗) ≥ 1
2 · (1 − 𝜀) · 𝜁2 ·

∑
𝐶∈ C̊ 𝑡𝐶 .

Proof. This follows from Lemma 9.19, using that the link costs lie in [1,Δ] and that for every ℓ ∈ 𝐿, there is at most
one 𝐶 ∈ C̊𝑢𝑝 and at most one 𝐶 ∈ C̊𝑑𝑜𝑤𝑛 with apex(ℓ) ∈ 𝑉 (𝐶) because the up-cores, as well as the down-cores, are pairwise
vertex-disjoint.

Lemma 9.22. We have 𝑐(𝑥∗∗) ≤ (1 + 𝜀)2 · 𝑐(𝑥), i.e., (9.7.1) holds.

Proof. Using Proposition 7.5, and Proposition 8.8, we obtain

𝑐(𝑥∗∗) ≤ 𝑐(𝑥∗) + Δ ·
∑︁
𝐶∈ C̊

𝑥∗ ({ℓ ∈ 𝐿 : 𝑎𝑟𝐶 ∈
−−→cov(ℓ)})

+ Δ ·
∑︁
𝐶∈ C̊

[ 𝑡𝐶∑︁
𝑖=1

𝑥∗ ({ℓ ∈ 𝐿 : 𝑎𝐶𝑖 ∈
−−→cov(ℓ)}) +

𝑡𝐶∑︁
𝑖=1,𝑣𝐶

𝑖
≠𝑟𝐶

𝑥∗ ({ℓ ∈ 𝐿 : 𝑠𝐶𝑖 ∈
−−→cov(ℓ)})

]
(9.1)
≤ 𝑐(𝑥∗) + 𝜁1 · Δ · |C̊ | + 2 · 𝜁1 · Δ ·

∑︁
𝐶∈ C̊

𝑡𝐶

(∗)
≤ (1 + 𝜀) · 𝑐(𝑥) + 3 · 𝜁1 · Δ ·

∑︁
𝐶∈ C̊

𝑡𝐶
(8.4)
≤ (1 + 𝜀) · 𝑐(𝑥) + 𝜀 · 1

2
· (1 − 𝜀) · 𝜁2 ·

∑︁
𝐶∈ C̊

𝑡𝐶

≤ (1 + 𝜀) · 𝑐(𝑥) + 𝜀 · 𝑐(𝑥∗) ≤ (1 + 𝜀)2 · 𝑐(𝑥),

where the inequality marked (∗) follows from Theorem 8.3 (i) and the fact that 𝑡𝐶 ≥ 1 for every core 𝐶, the second-to-last
inequality follows from Corollary 9.21, and the last inequality follows again from Theorem 8.3 (i).

Combining Propositions 9.16 to 9.18, and Lemma 9.22 proves Theorem 9.7.

10 Best of three solutions For this section, we again fix a rooted WDTAP instance (𝑇, 𝐿, 𝑐, 𝑟) with cost ratio at most
Δ and a solution 𝑥 to (2.1) satisfying (8.6). Moreover, let 𝜎∗, 𝑥∗ and 𝑊∗ be as given by Theorem 8.3 and let 𝑥∗∗ and 𝜎∗∗ be
as given by Theorem 9.7. The goal of this section is to prove Theorem 7.12 by constructing three different solutions arising
from 𝑥∗∗ by splitting certain links. To this end, we classify and partition the links in the support of 𝑥∗∗. We begin by proving
the following technical claim, that will be helpful to define disjoint subsets of supp(𝑥∗∗).

Proposition 10.1. Let ℓ ∈ supp(𝑥∗∗) and let 𝐶 ∈ C̊ such that cov(ℓ) ∩ 𝐴(𝐶) ≠ ∅. Then apex(ℓ) ∈ 𝑉 (𝐶) and
cov(ℓ) ∩ 𝐴(𝐶) contains an arc incident to apex(ℓ).

Proof. Let 𝑎 ∈ cov(ℓ) ∩ 𝐴(𝐶) and let 𝑣 be the bottom vertex of 𝑎. Then both apex(ℓ) and 𝑟𝐶 appear on 𝑃𝑣𝑟 , the 𝑣-𝑟-path
in 𝑇 . If apex(ℓ) lies on the 𝑣-𝑟𝐶 -subpath of 𝑃𝑣𝑟 , then apex(ℓ) ∈ 𝑉 (𝐶) and moreover, the last arc of the 𝑣-apex(ℓ)-subpath
of 𝑃𝑣𝑟 is contained in cov(ℓ) ∩ 𝐴(𝐶). Otherwise, ℓ ∈ 𝐿↑𝑟𝐶 ∪ 𝐿

↓
𝑟𝐶 and cov(ℓ) ∩ 𝐴(𝐶) ≠ ∅, contradicting (9.7.3).

Definition 10.2. We define −→𝐿 B {ℓ ∈ 𝐿 : ∃𝐶 ∈ C̊ : −−→cov(ℓ) ∩ 𝐴(𝐶) ≠ ∅} to be the set of links that “cover part of a core
in the right direction” and←−𝐿 B {ℓ ∈ 𝐿 : ∃𝐶 ∈ C̊ : ←−−cov(ℓ) ∩ 𝐴(𝐶) ≠ ∅} to be the set of links that “cover part of a core in
the wrong direction”.

It turns out that the support of 𝑥∗∗ does not contain any link in
−→
𝐿 ∩←−𝐿 . In fact,

−→
𝐿 ∩←−𝐿 does not even contain a shadow of a

link in supp(𝑥∗∗).

Lemma 10.3.
−→
𝐿 ∩←−𝐿 ∩ {ℓ : ℓ is a shadow of a link in supp(𝑥∗∗)} = ∅.

Proof. Assume towards a contradiction that ℓ′ ∈ −→𝐿 ∩ ←−𝐿 is a shadow of ℓ ∈ supp(𝑥∗∗). Then also ℓ ∈ −→𝐿 ∩ ←−𝐿 and
there are 𝐶 ∈ C̊ with −−→cov(ℓ) ∩ 𝐴(𝐶) ≠ ∅ and 𝐶′ ∈ C̊ with ←−−cov(ℓ) ∩ 𝐴(𝐶) ≠ ∅. By (9.7.2), ←−−cov(ℓ) ∩ 𝐴(𝐶) = ∅ and
−−→cov(ℓ) ∩ 𝐴(𝐶′) = ∅. Hence, 𝐶 ≠ 𝐶′ and, in particular, 𝐴(𝐶) ∩ 𝐴(𝐶′) = ∅. By Proposition 10.1, apex(ℓ) ∈ 𝑉 (𝐶) ∩ 𝑉 (𝐶′)
and one of the two incident arcs of apex(ℓ) in cov(ℓ) is contained in 𝐴(𝐶), call it 𝑎, and the other one is contained in 𝐴(𝐶′),
call it 𝑎′. Let ℓ = (𝑢, 𝑣). Then either 𝑎 ∈ −−→cov((𝑢, apex(ℓ))) and 𝑎′ ∈ ←−−cov((apex(ℓ), 𝑣)), implying that both 𝑎 and 𝑎′ are
down-arcs, or 𝑎′ ∈ ←−−cov((𝑢, apex(ℓ))) and 𝑎 ∈ −−→cov((apex(ℓ), 𝑣)), implying that both 𝑎 and 𝑎′ are up-arcs. In either case, 𝐶
and 𝐶′ are distinct cores for the same direction sharing a vertex (namely, apex(ℓ)), a contradiction.
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To construct the different solutions, we will split certain collections of links at their apex. To describe this operation formally,
we introduce the following notation.

Definition 10.4. Let 𝐿′ ⊆ 𝐿. The splitting 𝜎𝐿′ of 𝐿, which splits every link in 𝐿′ (that is not already an up- or
down-link) at its apex, is defined as follows. If ℓ ∈ 𝐿 \ 𝐿′ or ℓ ∈ 𝐿′ is an up-link or a down-link, we define 𝜎𝐿′ (ℓ) = {ℓ}. If
ℓ = (𝑢, 𝑣) ∈ 𝐿′ is neither an up- nor a down-link, we define 𝜎𝐿′ (ℓ) = {(𝑢, apex(ℓ)), (apex(ℓ), 𝑣)}.

Let 𝑋 B
⋃

𝐶∈ C̊ 𝑉 (𝐶) be the set of vertices of all cores. Let 𝐿𝑐𝑟𝑜𝑠𝑠 consist of all (𝑊∗ ∪ 𝑋)-cross-links that are neither
contained in

−→
𝐿 nor in

←−
𝐿 , i.e.,

𝐿𝑐𝑟𝑜𝑠𝑠 B {ℓ ∈ 𝐿 \ (
−→
𝐿 ∪←−𝐿 ) : ℓ is a (𝑊∗ ∪ 𝑋)-cross-link}.

We further define 𝐿𝑟𝑒𝑠𝑡 B 𝐿 \ (𝐿𝑐𝑟𝑜𝑠𝑠 ∪
−→
𝐿 ∪←−𝐿 ). By Lemma 10.3, we know that

(10.1) supp(𝑥∗∗) = (𝐿𝑐𝑟𝑜𝑠𝑠 ∩ supp(𝑥∗∗)) ¤∪(−→𝐿 ∩ supp(𝑥∗∗)) ¤∪(←−𝐿 ∩ supp(𝑥∗∗)) ¤∪(𝐿𝑟𝑒𝑠𝑡 ∩ supp(𝑥∗∗))

is a partition of supp(𝑥∗∗). We are now ready to construct the three solutions of interest.

Lemma 10.5. Let 𝜎1 B 𝜎𝐿\𝐿𝑟𝑒𝑠𝑡
◦ 𝜎∗∗ ◦ 𝜎∗, let 𝑥1 B split(𝑥∗∗, 𝜎𝐿\𝐿𝑟𝑒𝑠𝑡

) = split(𝑥, 𝜎1) and let 𝐿1 B supp(𝑥1). Then
the visible width of (𝑇, 𝐿1) is at most 𝑘 . In particular, we can in polynomial time, compute a solution to (𝑇, 𝐿1) of cost at
most 𝑐(𝑥1), or find violated visibly 𝑘-wide modification inequality for (𝑇, 𝐿, 𝑐, 𝑟).

Proof. Recall that 𝐿1 = supp(𝑥1) and 𝑥1 = split(𝑥∗, 𝜎𝐿\𝐿𝑟𝑒𝑠𝑡
◦𝜎∗∗). By Proposition 7.4 and Theorem 8.3, we know that

𝑟, as well as every 𝑣 ∈ 𝑉 \ {𝑟} for which 𝑎𝑣 is not 𝜁2-heavy (with respect to 𝑥∗), has visible width at most 𝑘 with respect
to 𝐿1. Moreover,

−−−−−−→
viwidth(𝑣) ≤ 𝑘 for every 𝑣 ∈ 𝑉 . Hence, it suffices to show that for every 𝑣 ∈ 𝑉 \ {𝑟} for which 𝑎𝑣 is

𝜁2-heavy,
←−−−−−−
viwidth(𝑣) ≤ 𝑘 (with respect to 𝐿1). In fact, we will show that

←−−−−−−
viwidth(𝑣) = 0 by showing the following claim:

Claim 10.6. No arc in
←−
𝐴 𝑣 is visible for 𝑣 with respect to 𝐿1.

Proof of claim. Recall that
←−
𝐴 𝑣 is the set of arcs in 𝐴𝑣 that have the opposite orientation of 𝑎𝑣 , i.e., that are down-arcs,

if 𝑎𝑣 is an up-arc, and up-arcs, if 𝑎𝑣 is a down-arc. Towards a contradiction, let 𝑎 ∈ ←−𝐴 𝑣 and assume that there is ℓ ∈ 𝐿1 with
𝑎 ∈ −−→cov(ℓ) and 𝑣 ∈ in(𝑃ℓ). By Proposition 9.6, there exists a core 𝐶 containing 𝑎𝑣 . In particular, 𝑣 ∈ 𝑋 . We note that 𝐿1
does not contain any (𝑊∗ ∪ 𝑋)-cross-links because every (𝑊∗ ∪ 𝑋)-cross-link is contained in 𝐿 \ 𝐿𝑟𝑒𝑠𝑡 and has, hence, been
split at its apex when constructing 𝐿1. In particular, ℓ cannot be a 𝑣-cross-link. As 𝑣 ∈ in(𝑃ℓ), apex(ℓ) has to be a strict
ancestor of 𝑣 and exactly one endpoint of ℓ, say 𝑢, is contained in𝑈𝑣 . Both 𝑎 and 𝑎𝑣 lie on the 𝑢-apex(ℓ)-path in 𝑇 , however,
as 𝑎 ∈ ←−𝐴 𝑣 , exactly one of them is an up-arc and exactly one of them is a down-arc. As 𝑎 ∈ −−→cov(ℓ), this implies 𝑎𝑣 ∈ ←−−cov(ℓ).
By Corollary 9.8, apex(ℓ) ∈ 𝑉 (𝐶) ⊆ 𝑋 . As 𝐿1 does not contain any (𝑊∗ ∪ 𝑋)-cross-link, apex(ℓ) is an endpoint of ℓ.

As all arcs on the 𝑣-apex(ℓ)-path are contained in 𝐴(𝐶) and oriented in the same way as 𝑎𝑣 , none of them is contained
in −−→cov(ℓ). Hence, 𝑃ℓ is a subpath of the 𝑢-𝑣-subpath in 𝑇 . Hence, 𝑣 ∉ in(𝑃ℓ), a contradiction.

Hence, (𝑇, 𝐿1, 𝑐, 𝑟) has visible width at most 𝑘 and we can find an optimum solution in polynomial time by Corollary 6.8.
If the optimum solution has cost at most 𝑐(𝑥1) =

∑
ℓ∈𝐿

∑
ℓ′∈𝜎1 (ℓ ) 𝑐(ℓ′) · 𝑥ℓ (by Proposition 7.6), then we have found the

desired solution. Otherwise, the set of 𝜁1-covered arcs that we initially contracted to obtain (8.6), together with the splitting
𝜎1 that we applied to get from our initial LP solution 𝑥 to 𝑥1, yields a violated visibly 𝑘-wide modification inequality.

Lemma 10.7. Let 𝜎2 B 𝜎←−
𝐿∪𝐿𝑟𝑒𝑠𝑡

◦ 𝜎∗∗ ◦ 𝜎∗, let 𝑥2 B split(𝑥∗∗, 𝜎←−
𝐿∪𝐿𝑟𝑒𝑠𝑡

) = split(𝑥, 𝜎2) and let 𝐿2 B supp(𝑥2). Then
(𝑇, 𝐿2, 𝑐, 𝑟) is a willow. In particular, we can, in polynomial time, compute a solution of cost at most 𝑐(𝑥2).

Proof. By Corollary 9.8, applied with 𝜎 = 𝜎id, we know that every link in
−→
𝐿 ∩ supp(𝑥∗∗) is an 𝑋-cross-link or an

up- or down-link. Hence, every link in supp(𝑥2) is an up-link, a down-link, or a (𝑊∗ ∪ 𝑋)-cross-link. To establish that
(𝑇, 𝐿2, 𝑐, 𝑟) is a willow, it suffices to show that every vertex in (𝑊∗ ∪ 𝑋) is up- or down-independent with respect to 𝐿2. For
vertices in 𝑊∗, this follows from Lemma 8.13, and Propositions 8.5 and 8.9. Recall that 𝑋 =

⋃
𝐶∈ C̊ 𝑉 (𝐶). We show that for

𝐶 ∈ C̊𝑢𝑝 , all vertices in 𝑉 (𝐶) are down-independent. Analogously, one can show that for 𝐶 ∈ C̊𝑑𝑜𝑤𝑛, all vertices in 𝑉 (𝐶)
are up-independent.

Let 𝐶 ∈ C̊𝑢𝑝 . By (9.7.3), supp(𝑥∗∗) ∩ 𝐿↑𝑟𝐶 = ∅, so also supp(𝑥2) ∩ 𝐿↑𝑟𝐶 = ∅ by Proposition 8.9. By Proposition 8.5, 𝑟𝐶 is
down-independent. Next, let 𝑣 ∈ 𝑉 (𝐶) \ {𝑟𝐶 }. Then 𝑎𝑣 ∈ 𝐴(𝐶). Assume towards a contradiction there were ℓ = (𝑢, 𝑤) ∈ 𝐿2
with −−→cov(ℓ) ∩ 𝐴𝑣 ∩ 𝐴𝑑𝑜𝑤𝑛 ≠ ∅ and −−→cov(ℓ) ⊈ 𝐴𝑣 . The first property implies 𝑢 ∈ 𝑈𝑣 \ {𝑣}, the second property tells us
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that apex(ℓ) is a strict ancestor of 𝑣. In particular, 𝑎𝑣 ∈ cov(ℓ). By Corollary 9.8, apex(ℓ) ∈ 𝑉 (𝐶). As 𝐶 ∈ C̊𝑢𝑝 , 𝑎𝑣 is an
up-arc, so 𝑎𝑣 ∈ ←−−cov(ℓ), implying ℓ ∈ ←−𝐿 . But this implies that apex(ℓ) = 𝑤 is an endpoint of ℓ because all links in

←−
𝐿 were

split at their apices. Hence, cov(ℓ) \ 𝐴𝑣 consists of the up-arcs on the 𝑣-apex(ℓ)-path, implying cov(ℓ) \ 𝐴𝑣 ⊆ ←−−cov(ℓ) and
−−→cov(ℓ) ⊆ 𝐴𝑣 , contradicting our assumptions.

Before describing the splitting leading to our third solution, we make the following observation:

Lemma 10.8. Let ℓ ∈ −→𝐿 ∩ supp(𝑥∗∗). Then there exists a unique core 𝐶 ∈ C̊ such that −−→cov(ℓ) ∩ 𝐴(𝐶) ≠ ∅.

Proof. By definition of
−→
𝐿 , there exists at least one core with this property. Assume towards a contradiction that there

are two distinct cores 𝐶1 and 𝐶2 such that −−→cov(ℓ) ∩ 𝐴(𝐶1) ≠ ∅ and −−→cov(ℓ) ∩ 𝐴(𝐶2) ≠ ∅. Let 𝑤 B apex(ℓ). By Corollary 9.8,
we know that 𝑤 ∈ 𝑉 (𝐶1) ∩𝑉 (𝐶2). If 𝑤 = 𝑟, then 𝑤 = 𝑟𝐶1 = 𝑟𝐶2 . Otherwise, if 𝑤 ≠ 𝑟, 𝑎𝑤 is contained in at most one of the
sets 𝐴(𝐶1) or 𝐴(𝐶2), assume w.l.o.g. that 𝑎𝑤 ∉ 𝐴(𝐶1). As 𝑤 ∈ 𝑉 (𝐶1), but 𝑎𝑤 ∉ 𝐴(𝐶1), we must, again, have 𝑤 = 𝑟𝐶1 .

Let 𝑎 ∈ −−→cov(ℓ) ∩ 𝐴(𝐶1) and let 𝑥 be the bottom vertex of 𝑎. As 𝑎 ∈ −−→cov(ℓ) and apex(ℓ) = 𝑤 = 𝑟𝐶1 , ℓ covers all arcs
on the 𝑥-𝑟𝐶1 -path in 𝐶1, including the arc incident to 𝑟𝐶1 . By (9.7.4), 𝑟𝐶1 = apex(ℓ) is an endpoint of ℓ, so ℓ is an up-link
or a down-link. As −−→cov(ℓ) ∩ 𝐴(𝐶1) ≠ ∅ and −−→cov(ℓ) ∩ 𝐴(𝐶2) ≠ ∅, 𝐶1 and 𝐶2 must both be down-cores, or both be up-cores,
respectively. However, this contradicts 𝑤 ∈ 𝑉 (𝐶1) ∩𝑉 (𝐶2) because two distinct down-cores/ up-cores are vertex-disjoint.

For ℓ ∈ −→𝐿 ∩ supp(𝑥∗∗), let 𝐶ℓ be the unique core with −−→cov(ℓ) ∩ 𝐴(𝐶) ≠ ∅. We define a splitting 𝜎′3 of 𝐿 as follows:

• Let ℓ = (𝑢, 𝑣) ∈ −→𝐿 ∩ supp(𝑥∗∗) with 𝐶ℓ ∈ C̊𝑢𝑝 . Let 𝑤 be the lowest vertex from 𝑉 (𝐶ℓ) on the apex(ℓ)-𝑣-path in 𝑇 and
define 𝜎′3 (ℓ) B {(𝑢, apex(ℓ)), (apex(ℓ), 𝑤), (𝑤, 𝑣)}.

• Let ℓ = (𝑢, 𝑣) ∈ −→𝐿 ∩ supp(𝑥∗∗) with 𝐶ℓ ∈ C̊𝑑𝑜𝑤𝑛. Let 𝑤 be the lowest vertex from 𝑉 (𝐶ℓ) on the 𝑢-apex(ℓ)-path in 𝑇

and define 𝜎′3 (ℓ) B {(𝑢, 𝑤), (𝑤, apex(ℓ)), (apex(ℓ), 𝑣)}.

• Let ℓ = (𝑢, 𝑣) ∈ 𝐿𝑐𝑟𝑜𝑠𝑠 ∪ 𝐿𝑟𝑒𝑠𝑡 . Define 𝜎′3 (ℓ) = {(𝑢, apex(ℓ)), (apex(ℓ), 𝑣)}.

• For every other link ℓ, define 𝜎′3 (ℓ) = {ℓ}.

Lemma 10.9. Let 𝜎3 B 𝜎′3 ◦ 𝜎
∗∗ ◦ 𝜎∗ and let 𝑥3 B split(𝑥∗∗, 𝜎′3) = split(𝑥, 𝜎3). Let 𝐿3 B supp(𝑥3) and let

𝑀 ∈ {0, 1}𝐴×𝐿3 denote the arc-link-coverage matrix of (𝑇, 𝐿3, 𝑐, 𝑟). Then 𝑀 is TU. In particular, we can, in polynomial
time, compute a solution to (𝑇, 𝐿3, 𝑐, 𝑟) of cost at most 𝑐(𝑥3).

Before we prove Lemma 10.9, we first make the following observations:

Proposition 10.10. Let ℓ ∈ 𝐿3 such that ℓ is neither an up- nor a down-link. Then ℓ ∈ ←−𝐿 ∩ supp(𝑥∗∗).

Proof. As ℓ ∈ 𝐿3, there is ℓ′ ∈ supp(𝑥∗∗) with ℓ ∈ 𝜎′3 (ℓ
′). For every link ℓ′′ ∈ supp(𝑥∗∗) ∩ (−→𝐿 ∪ 𝐿𝑐𝑟𝑜𝑠𝑠 ∪ 𝐿𝑟𝑒𝑠𝑡 ),

𝜎′3 (ℓ
′′) consists of up- and down-links only. Hence, ℓ′ ∈ ←−𝐿 ∩ supp(𝑥∗∗). As 𝜎′3 (ℓ

′) = {ℓ′}, we have ℓ = ℓ′.

Proposition 10.11. Let ℓ ∈ 𝐿3 ∩
−→
𝐿 . Then there exists a unique core 𝐶 ∈ C̊ such that −−→cov(ℓ) ∩ 𝐴(𝐶) ≠ ∅. Moreover,

−−→cov(ℓ) ⊆ 𝐴(𝐶) and ℓ is an up- or down-link.

Proof. Let ℓ ∈ 𝐿3 ∩
−→
𝐿 and let 𝐶 be a core with −−→cov(ℓ) ∩ 𝐴(𝐶) ≠ ∅. Let ℓ′ ∈ supp(𝑥∗∗) such that ℓ ∈ 𝜎′3 (ℓ

′). Then ℓ is
a shadow of ℓ′, so −−→cov(ℓ) ⊆ −−→cov(ℓ′). In particular, −−→cov(ℓ′) ∩ 𝐴(𝐶) ≠ ∅, ℓ′ ∈ −→𝐿 and by Lemma 10.8, 𝐶 = 𝐶ℓ′ is the unique
core 𝐶′ such that −−→cov(ℓ′) ∩ 𝐴(𝐶′) ≠ ∅. Hence, 𝐶 is also the unique core 𝐶′ such that −−→cov(ℓ) ∩ 𝐴(𝐶′) ≠ ∅. Let 𝑤 be as in
the definition of 𝜎′3 (ℓ

′). The second part of the statement follows from the facts that apex(ℓ′) ∈ 𝑉 (𝐶) by Corollary 9.8 and
that we must have ℓ = (apex(ℓ′), 𝑤), if 𝐶 is an up-core, and ℓ = (𝑤, apex(ℓ′)), if 𝐶 is a down-core, because this is the only
link in 𝜎′3 (ℓ

′) covering part of 𝐴(𝐶).

We further introduce the following notation.

Definition 10.12. We call a matrix 𝑀 ∈ R𝐼×𝐽 a block diagonal matrix with blocks 𝑀 [𝐼𝑠 , 𝐽𝑠], 𝑠 = 1, . . . , 𝑡 if 𝐼 = ¤⋃𝑡

𝑠=1𝐼𝑠

is a partition of 𝐼, 𝐽 = ¤⋃𝑡

𝑠=1𝐽𝑠 is a partition of 𝐽 and for 𝑖 ∈ 𝐼𝑠1 and 𝑗 ∈ 𝐽𝑠2 , 𝑀𝑖 𝑗 ≠ 0 implies 𝑠1 = 𝑠2, i.e., non-zero entries
can only occur within one block.
This definition may differ from notions used in the literature in that we do not require the blocks to be square or have the
same size.
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Proof of Lemma 10.9. We first establish the following claim:

Claim 10.13. 𝑀 is a block diagonal matrix with blocks 𝑀 [𝐴(𝐶), {ℓ ∈ 𝐿3 : −−→cov(ℓ) ∩ 𝐴(𝐶) ≠ ∅}] for 𝐶 ∈ C̊ and
𝑀 [𝐴 \⋃𝐶∈ C̊ 𝐴(𝐶), 𝐿3 \

−→
𝐿 ].

Proof of claim. By definition, the sets 𝐴(𝐶)𝐶∈ C̊ are pairwise disjoint. This shows that the arcs sets indexing the rows
of the blocks form a partition of 𝐴.

By Proposition 10.11, the link sets indexing the columns of the blocks form a partition of 𝐿3.
Finally, we verify the block structure of 𝑀 . First, let 𝐶 ∈ C̊, let 𝑎 ∈ 𝐴(𝐶) and let ℓ′ ∈ 𝐿3 such that 𝑀𝑎,ℓ′ ≠ 0. Then

𝑎 ∈ −−→cov(ℓ′), so ℓ′ ∈ {ℓ ∈ 𝐿3 : −−→cov(ℓ) ∩ 𝐴(𝐶) ≠ ∅}.
Next, let 𝑎 ∈ 𝐴 \⋃𝐶∈ C̊ 𝐴(𝐶). By Proposition 10.11, we have 𝑎 ∉

−−→cov(ℓ), and, hence, 𝑀𝑎,ℓ = 0 for every ℓ ∈ 𝐿3 ∩
−→
𝐿 .

Thus, if 𝑀𝑎,ℓ ≠ 0 for some ℓ ∈ 𝐿3, then ℓ ∈ 𝐿3 \
−→
𝐿 .

To show that 𝑀 is TU, it suffices to establish total unimodularity of each of the blocks separately. For the blocks
of the form 𝑀 [𝐴(𝐶), {ℓ ∈ 𝐿3 : −−→cov(ℓ) ∩ 𝐴(𝐶) ≠ ∅}] with 𝐶 ∈ C̊, this follows from Theorem 5.3 and the fact that
{ℓ ∈ 𝐿3 : −−→cov(ℓ) ∩ 𝐴(𝐶) ≠ ∅} only consists of up- or down-links by Proposition 10.11.

The block 𝑀 [𝐴\⋃𝐶∈ C̊ 𝐴(𝐶), 𝐿3\
−→
𝐿 ] corresponds to the instance (𝑇 ′, 𝐿′, 𝑐′, 𝑟 ′) obtained from the tuple (𝑇, 𝐿3\

−→
𝐿 , 𝑐, 𝑟)

by contracting all arcs in
⋃

𝐶∈ C̊ 𝐴(𝐶). Each (super-)vertex 𝑣 ∈ 𝑉 (𝑇 ′) corresponds to a set 𝑌𝑣 ⊆ 𝑉 (𝑇) of original vertices.
Let 𝑅 B {𝑣 ∈ 𝑉 (𝑇 ′) : ∃𝐶 ∈ C̊ : 𝑟𝐶 ∈ 𝑌𝑣}.

Claim 10.14. Let ℓ′ ∈ 𝐿′ such that ℓ′ is neither an up- nor a down-link. Then ℓ′ is an 𝑅-cross-link.

Proof of claim. By Proposition 10.10, every such link ℓ′ ∈ 𝐿′ corresponds to a link ℓ ∈ ←−𝐿 ∩ supp(𝑥∗∗). By definition of
←−
𝐿 , let 𝐶 ∈ C̊ such that←−−cov(ℓ) ∩ 𝐴(𝐶) ≠ ∅. By Corollary 9.8, apex(ℓ) ∈ 𝑉 (𝐶) and all of 𝑉 (𝐶), including 𝑟𝐶 , is contracted
into the same super-vertex, which becomes apex(ℓ′).

We show that every vertex in 𝑅 is up- or down-independent, establishing that (𝑇 ′, 𝐿′, 𝑐′, 𝑟 ′) is a willow and concluding the
proof by Theorem 5.3.

Let 𝑣 ∈ 𝑅. 𝑌𝑣 is the vertex set of a connected subgraph of 𝑇 , consisting of a collection of cores. In particular, there
is a unique vertex in 𝑌𝑣 that is closest to the root 𝑟 of 𝑇 , and it is the root 𝑟𝐶 of a core 𝐶. We may assume without loss of
generality that 𝐶 ∈ C̊𝑢𝑝; the case where 𝐶 ∈ C̊𝑑𝑜𝑤𝑛 can be handled analogously. We show that no link in 𝐿′ points out of 𝑇 ′𝑣 ,
establishing that 𝑣 is down-independent by Proposition 8.5. Assume towards a contradiction there were ℓ′ = (𝑢′, 𝑤′) ∈ 𝐿′

pointing out of 𝑇 ′𝑣 , i.e., 𝑢′ ∈ 𝑉 (𝑇 ′𝑣) \ {𝑣} and 𝑤′ ∈ 𝑉 (𝑇 ′) \ 𝑉 (𝑇 ′𝑣). Let ℓ′ correspond to the link ℓ = (𝑢, 𝑤) ∈ 𝐿3 \
−→
𝐿 with

𝑢 ∈ 𝑌𝑢′ and 𝑤 ∈ 𝑌𝑤′ . As 𝑌𝑢′ , 𝑌𝑣 and 𝑌𝑤′ are vertex sets of connected, vertex-disjoint subgraphs of the tree 𝑇 and 𝑟𝐶 is the
vertex of𝑌𝑣 closest to the root of 𝑇 , 𝑌𝑢′ ⊆ 𝑉 (𝑇𝑟𝐶 ) \ {𝑟𝐶 } and𝑌𝑤′ ⊆ 𝑉 (𝑇) \𝑉 (𝑇𝑟𝐶 ). Hence, ℓ points out of 𝑇𝑟𝐶 , contradicting
(9.7.3).

We are now ready to finally prove Theorem 7.12, which we restate for convenience.

Theorem 7.12. Let 𝜀,Δ > 0. We can compute a constant 𝑘 (𝜀,Δ) with the following property: Given a rooted instance
(𝑇, 𝐿̄, 𝑐, 𝑟) of WDTAP with cost ratio at most Δ and a feasible solution 𝑥 to (2.1), we can, in polynomial time, either find a
solution 𝑆 ⊆ 𝐿̄ with 𝑐(𝑆) ≤ (1.75 + 𝜀) · 𝑐(𝑥), or find a visibly 𝑘 (𝜀,Δ)-wide modification inequality that is violated by 𝑥.

Proof. Let 𝜀 B min{1, 𝜀̄}
7 . Define the constants 𝛾, 𝜁1, 𝜁2 and 𝑘 as in Section 8 and let 𝑘 (𝜀,Δ) B 𝑘 . Let (𝑇, 𝐿, 𝑐, 𝑟)

and 𝑥 arise from (𝑇, 𝐿̄, 𝑐, 𝑟) and 𝑥 by contracting the set 𝐴̄ of 𝜁1-covered arcs. Note that 𝑥 is a solution to (2.1) of cost
𝑐(𝑥) ≤ 𝑐(𝑥) satisfying (8.6). We apply Theorem 8.3 and Theorem 9.7 to obtain splittings 𝜎∗ and 𝜎∗∗ and solutions 𝑥∗ and
𝑥∗∗ to (2.1) for (𝑇, 𝐿, 𝑐, 𝑟). We define 𝐿𝑐𝑟𝑜𝑠𝑠 ,

−→
𝐿 ,
←−
𝐿 and 𝐿𝑟𝑒𝑠𝑡 as in the beginning of this section. We apply Lemma 10.5 to,

in polynomial time, either compute a solution 𝑆1 to (𝑇, 𝐿, 𝑐, 𝑟) of cost at most 𝑐(𝑥1) or a violated visibly 𝑘-wide modification
inequality for (𝑇, 𝐿, 𝑐, 𝑟). In the latter case, the corresponding splitting, together with 𝐴̄, gives rise to a violated visibly
𝑘-wide modification inequality for (𝑇, 𝐿̄, 𝑐, 𝑟) and 𝑥. Hence, we may assume in the following that we have found a solution
𝑆1 to (𝑇, 𝐿, 𝑐, 𝑟) of cost 𝑐(𝑆1) ≤ 𝑐(𝑥1). We further apply Lemmas 10.7 and 10.9 to, in polynomial time, compute solutions
𝑆2 and 𝑆3 to (𝑇, 𝐿, 𝑐, 𝑟) of cost 𝑐(𝑆2) ≤ 𝑐(𝑥2) and 𝑐(𝑆3) ≤ 𝑐(𝑥3), respectively.

For 𝐿′ ∈ {𝐿𝑐𝑟𝑜𝑠𝑠 ,
←−
𝐿 ,
−→
𝐿 , 𝐿𝑟𝑒𝑠𝑡 }, we define 𝐶∗∗ (𝐿′) B ∑

ℓ∈𝐿 𝑐(ℓ) · 𝑥∗∗ (ℓ). By (10.1), we know that

𝑐(𝑥∗∗) = 𝐶∗∗ (𝐿𝑐𝑟𝑜𝑠𝑠) + 𝐶∗∗ (
←−
𝐿 ) + 𝐶∗∗ (−→𝐿 ) + 𝐶∗∗ (𝐿𝑟𝑒𝑠𝑡 ).
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By Proposition 7.9 and because |𝜎𝐿\𝐿𝑟𝑒𝑠𝑡
(ℓ) | = 2 for ℓ ∈ 𝐿 \ 𝐿𝑟𝑒𝑠𝑡 and |𝜎𝐿\𝐿𝑟𝑒𝑠𝑡

(ℓ) | = 1 for ℓ ∈ 𝐿𝑟𝑒𝑠𝑡 , we have

𝑐(𝑥1) ≤ 𝑐(𝑥∗∗) + 𝐶∗∗ (𝐿𝑐𝑟𝑜𝑠𝑠) + 𝐶∗∗ (
←−
𝐿 ) + 𝐶∗∗ (−→𝐿 ).

By Proposition 7.9 and because |𝜎←−
𝐿∪𝐿𝑟𝑒𝑠𝑡

(ℓ) | = 2 for ℓ ∈ ←−𝐿 ∪ 𝐿𝑟𝑒𝑠𝑡 and |𝜎←−
𝐿∪𝐿𝑟𝑒𝑠𝑡

(ℓ) | = 1 for ℓ ∉
←−
𝐿 ∪ 𝐿𝑟𝑒𝑠𝑡 , we have

𝑐(𝑥2) ≤ 𝑐(𝑥∗∗) + 𝐶∗∗ (←−𝐿 ) + 𝐶∗∗ (𝐿𝑟𝑒𝑠𝑡 ).

By Proposition 7.9 and because |𝜎′3 (ℓ) | = 3 for ℓ ∈ −→𝐿 ∩ supp(𝑥∗∗), |𝜎′3 (ℓ) | = 2 for ℓ ∈ 𝐿𝑐𝑟𝑜𝑠𝑠 ∪ 𝐿𝑟𝑒𝑠𝑡 and |𝜎′3 (ℓ) | = 1 for
every other link ℓ, we have

𝑐(𝑥3) ≤ 𝑐(𝑥∗∗) + 𝐶∗∗ (𝐿𝑐𝑟𝑜𝑠𝑠) + 2 · 𝐶∗∗ (−→𝐿 ) + 𝐶∗∗ (𝐿𝑟𝑒𝑠𝑡 ).

Let 𝑆∗ be the best one among the three solutions 𝑆1, 𝑆2 and 𝑆3. Then

𝑐(𝑆∗) ≤1
4
· 𝑐(𝑥1) +

1
2
· 𝑐(𝑥2) +

1
4
· 𝑐(𝑥3) ≤ 𝑐(𝑥∗∗) + 1

2
· 𝐶∗∗ (𝐿𝑐𝑟𝑜𝑠𝑠) +

3
4
· 𝐶∗∗ (←−𝐿 ) + 3

4
· 𝐶∗∗ (−→𝐿 ) + 3

4
· 𝐶∗∗ (𝐿𝑟𝑒𝑠𝑡 )

≤ 7
4
· 𝑐(𝑥∗∗) ≤ 7

4
· (1 + 𝜀)2 · 𝑐(𝑥) ≤ 7

4
· (1 + 𝜀)2 · 𝑐(𝑥),

where the second-to-last inequality follows from (9.7.1). By Lemma 8.2, we can extend 𝑆∗ to a solution 𝑆 for (𝑇, 𝐿̄, 𝑐) of
cost at most (

7
4
· (1 + 𝜀)2 + 𝜀

)
· 𝑐(𝑥) ≤ 7

4
· (1 + 3 · 𝜀 + 𝜀2) · 𝑐(𝑥) ≤ 7

4
· (1 + 4 · 𝜀) · 𝑐(𝑥) =

(
7
4
+ 𝜀

)
· 𝑐(𝑥).

Observing that 7
4 = 1.75 concludes the proof.
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A Appendix

A.1 Multi 2-TAP reduces to DTAP In this section we prove that the weighted multi 2-TAP problem reduces to
WDTAP. In weighted multi 2-TAP, we are given an undirected tree 𝑇 = (𝑉, 𝐸), and a set of links 𝐿 ⊆

(𝑉
2
)

with positive
costs. For every 𝑒 ∈ 𝐸 , denote by 𝑆𝑒 ⊆ 𝑉 a shore of the fundamental tree cut induced by 𝑒. A multiset (repetition allowed)
of undirected links 𝐹 ⊆ 𝐿 is a 𝑘-covering of 𝑇 if every fundamental cut is covered at least 𝑘 times by 𝐹, that is |𝛿𝐹 (𝑆𝑒) | ≥ 𝑘

for all 𝑒 ∈ 𝐸 . The cost of a multi-set of links is the sum of the costs of links in that set, weighted by multiplicity.

Problem A.1 (Weighted Multi 2-TAP). Given an undirected tree 𝑇 = (𝑉, 𝐸) and a collection of links 𝐿 ⊆
(𝑉

2
)

with
positive costs, find the cheapest 2-covering of 𝑇 .

The reduction is easiest to explain by introducing an intermediate problem, which we call bi-directed tree cover, and
which is equivalent to WDTAP.

Problem A.2 (Bi-directed Tree Cover). Given an undirected tree𝑇 = (𝑉, 𝐸) and a collection of directed links 𝐿 ⊆ 𝑉×𝑉
with positive costs, choose a cheapest set of links 𝐹 so that |𝛿+

𝐹
(𝑆𝑒) | ≥ 1, and |𝛿−

𝐹
(𝑆𝑒) | ≥ 1 for all tree edges 𝑒 ∈ 𝐸 .

In other words, the cut induced by each tree edge must be crossed in both directed by the solution 𝐹. Bi-directed tree
cover is easily seen to be equivalent to WDTAP: on the one hand, it can be reduced to WDTAP by subdividing every tree
edge and orienting them in opposite directions. On the other hand, WDTAP can be reduced to bi-directed tree cover by
adding a zero-cost directed link ℓ𝑎 parallel to each tree arc 𝑎 ∈ 𝐴 in the same direction as 𝑎, and making the tree undirected.

We now show that weighted multi 2-TAP can be reduced to bi-directed tree cover. We replace every link ℓ ∈ 𝐿 by two
directed links ℓ+ and ℓ− in opposite directions, each having the same cost as ℓ. Clearly, every bi-directed tree cover solution
is a feasible solution to the weighted multi 2-TAP instance with the same cost. The following proposition shows that every
weighted multi 2-TAP solution can be oriented into a bi-directed tree cover solution of the same cost.

Proposition A.3. Given a 2-covering 𝐹 ⊆ 𝐿 of a tree 𝑇 = (𝑉, 𝐸), there is an orientation ®𝐹 such that
|𝛿+®𝐹 (𝑆𝑒) |, |𝛿

−
®𝐹
(𝑆𝑒) | ≥ 1 for every fundamental cut shore 𝑆𝑒.

Proof. Let S := {(𝑆𝑒) ∪ (𝑉 \ 𝑆𝑒) | 𝑒 ∈ 𝐸} be all the shores of fundamental cuts. Let ®𝐻 be an arbitrary orientation of
the 2-covering 𝐹. We seek an integral solution to the following submodular flow polyhedron:

|𝛿+®𝐻 (𝑆) | − 𝑥(𝛿
+
®𝐻
(𝑆)) + 𝑥(𝛿−®𝐻 (𝑆)) ≥ 1,∀𝑆 ∈ S.

This is indeed a submodular flow because S is cross-free and thus trivially a crossing family. We can take 𝑥ℓ = 1
2 for every

ℓ ∈ ®𝐻 to be a fractional feasible solution, and thus by the integrality of the submodular flow polyhedron, there is an integral
feasible solution 𝑥. Flipping ℓ if and only if 𝑥ℓ = 1, yields the desired orientation ®𝐹.

A.2 Hardness of DTAP In this section, we prove the following result on the hardness of DTAP.

Proposition A.4. DTAP is NP-hard and APX-hard, even in the unweighted setting.

Proof. We prove NP-hardness using the same reduction as the one for CSTA in [11]. We reduce 3-dimensional matching
(3DM) to unweighted DTAP.

Let 𝑀 ⊆ 𝑊 × 𝑋 × 𝑌 be an instance of 3DM with |𝑀 | = 𝑝, 𝑊 = {𝑤𝑖 | 𝑖 = 1, ..., 𝑞}, 𝑋 = {𝑥𝑖 | 𝑖 = 1, ..., 𝑞}, 𝑌 = {𝑦𝑖 | 𝑖 =
1, ..., 𝑞}. We define an instance of DTAP as follows. Let𝑉 = {𝑟}∪{𝑤𝑖 , 𝑥𝑖 , 𝑦𝑖 | 𝑖 = 1, ..., 𝑞}∪{𝑎𝑖 𝑗𝑘 , 𝑎′𝑖 𝑗𝑘 | (𝑤𝑖 , 𝑥 𝑗 , 𝑦𝑘) ∈ 𝑀}.

𝐴𝑇 = {(𝑟, 𝑥𝑖), (𝑟, 𝑤𝑖), (𝑦𝑖 , 𝑟) | 𝑖 = 1, ..., 𝑞} ∪ {(𝑎𝑖 𝑗𝑘 , 𝑤𝑖), (𝑤𝑖 , 𝑎
′
𝑖 𝑗𝑘
) | (𝑤𝑖 , 𝑥 𝑗 , 𝑦𝑘) ∈ 𝑀}.

𝐴𝐿 = {(𝑥 𝑗 , 𝑎𝑖 𝑗𝑘), (𝑎′𝑖 𝑗𝑘 , 𝑎𝑖 𝑗𝑘), (𝑎
′
𝑖 𝑗𝑘

, 𝑦𝑘) | (𝑤𝑖 , 𝑥 𝑗 , 𝑦𝑘) ∈ 𝑀}.
We claim that there exists a 3DM of size 𝑞 if and only if the minimum size of a DTAP solution is 𝑝 + 𝑞. Indeed,

notice that there are 2𝑝 + 2𝑞 leaves in 𝑇 , where each leaf needs at least one link to cover it. Thus, the minimum size
of a DTAP solution is at least 𝑝 + 𝑞. On the one hand, if there is a 3DM 𝑀 ′ of size 𝑞, we obtain a DTAP solution
𝐿′ := {(𝑥 𝑗 , 𝑎𝑖 𝑗𝑘), (𝑎′𝑖 𝑗𝑘 , 𝑦𝑘) | (𝑤𝑖 , 𝑥 𝑗 , 𝑦𝑘) ∈ 𝑀 ′} ∪ {(𝑎′

𝑖 𝑗𝑘
, 𝑎𝑖 𝑗𝑘) | (𝑤𝑖 , 𝑥 𝑗 , 𝑦𝑘) ∈ 𝑀 \𝑀 ′} whose size is 2𝑞 + (𝑝− 𝑞) = 𝑝 + 𝑞.

On the other hand, if there is a DTAP solution 𝐿′ of size 𝑝 + 𝑞, by the previous argument, 𝐿′ forms a perfect matching on
the leaves. Let 𝑀 ′ be the edges (𝑤𝑖 , 𝑥 𝑗 , 𝑦𝑘) ∈ 𝑀 such that 𝑎𝑖 𝑗𝑘 is matched to 𝑥 𝑗 . Clearly, 𝑎𝑖 𝑗𝑘 is matched to 𝑥 𝑗 if and
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only if 𝑎′
𝑖 𝑗𝑘

is matched to 𝑦𝑘 . Thus, |𝑀 ′ | = 𝑞 and it intersects every node in 𝑋 or 𝑌 exactly once. Since for every 𝑖, (𝑟, 𝑤𝑖)
is covered by the links from 𝑎′

𝑖 𝑗𝑘
to 𝑦𝑘 , 𝑀 ′ intersects every node in 𝑊 , and thus intersects every node in 𝑊 exactly once.

Therefore, 𝑀 ′ is indeed a 3DM of size 𝑞.

Following the methods in [18], the above proof can be extended to show APX-hardness via a reduction from bounded
degree 3DM.

A.3 Lower Bound on the Integrality Gap of DTAP We show the following lower bound on the integrality gap of
the natural set covering relaxation for DTAP.

Proposition A.5. The integrality gap of the set covering formulation for DTAP given in (2.1) is at least 6
5 .

Proof. Consider the following unweighted DTAP instance whose constraint matrix corresponds to a 5-cycle:

Choosing 𝑥ℓ =
1
2 for all ℓ ∈ 𝐿 yields a solution of cost 5

2 , while the smallest integral solution has cost 3.

Copyright © 2026 by SIAM
Unauthorized reproduction of this article is prohibited


	Introduction
	Preliminaries
	Comparison with previous work
	A decomposition-based approach for WTAP with bounded cost ratio …
	… and why it doesn't work for DTAP

	Our contribution
	New notions of partial decomposition: visible width and willows
	Our approach
	Components and cores: handling coverage in the wrong direction

	Total unimodularity for willows
	Dynamic program for instances of constant visible width
	The partial separation framework
	Splitting links
	The visibly k-wide modification LP
	Proof of theorem:mainresult

	Proving the weakened dream theorem
	Components and cores: handling heavy coverage in the wrong direction
	Structural analysis of problematic links
	The splitting algorithm
	Bounding the cost of the splitting

	Best of three solutions
	Appendix
	Multi 2-TAP reduces to DTAP
	Hardness of DTAP
	Lower Bound on the Integrality Gap of DTAP


