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Abstract

In this paper, we make some progress in addressing Woodall’s Conjecture, and the refuted

Edmonds-Giles Conjecture on packing dijoins in unweighted and weighted digraphs. Let D =

(V,A) be a digraph, and let w ∈ ZA≥0. A dicut is a cut δ+(U) ⊆ A for some nonempty proper

vertex subset U such that δ−(U) = ∅, a dijoin is an arc subset that intersects every dicut at least

once, and more generally a k-dijoin is an arc subset that intersects every dicut at least k times.

Suppose every dicut has weight at least τ , for some integer τ ≥ 2. Let ρ(τ,D,w) := 1
τ

∑
v∈V mv ,

where each mv is the integer in {0, 1, . . . , τ − 1} equal to w(δ+(v)) − w(δ−(v)) mod τ . In this

paper, we prove the following results, amongst others:

1. If w = 1, then A can be partitioned into a dijoin and a (τ − 1)-dijoin.

2. If ρ(τ,D,w) ∈ {0, 1}, then there is an equitable w-weighted packing of dijoins of size τ .

3. If ρ(τ,D,w) = 2, then there is a w-weighted packing of dijoins of size τ .

4. If w = 1, τ = 3, and ρ(τ,D,w) = 3, then A can be partitioned into three dijoins.

Each result is best possible: (1) and (4) do not hold for general w, (2) does not hold for

ρ(τ,D,w) = 2 even if w = 1, and (3) does not hold for ρ(τ,D,w) = 3.

The results are rendered possible by a Decompose, Lift, and Reduce procedure, which turns

(D,w) into a set of sink-regular weighted (τ, τ+1)-bipartite digraphs, each of which is a weighted

digraph where every vertex is a sink of weighted degree τ or a source of weighted degree τ, τ + 1,

and every dicut has weight at least τ . From there, an application of the classical alternating path

technique proves (2). For each of the weighted digraphs, we define two matroids M0,M1 of rank

ρ(τ,D,w) whose common ground set is the set of sources of weighted degree τ + 1, where M0

1

ar
X

iv
:2

20
2.

00
39

2v
3 

 [
m

at
h.

C
O

] 
 3

0 
M

ar
 2

02
2



is strongly base orderable while M1 is not in general. The integer decomposition property of the

base polytope of M1 then proves (1). The strong base orderability of M1 when it has rank two,

combined with a result of Davies and McDiarmid (J. LMS 1976) on packing common independent

sets of two strongly base orderable matroids, proves (3). Guided by the characterization of Brualdi

(Proc. AMS 1971) of the smallest non-strongly base orderable matroid, namely the cycle matroid

of K4, we carefully partition the ground set into two M(K4)-free restrictions of M1 when it has

rank three, and then prove (4).

Our results give rise to a number of approaches for resolving Woodall’s Conjecture, fixing the

refuted Edmonds-Giles Conjecture, and the τ = 2 Conjecture for the clutter of minimal dijoins.

They also show an intriguing connection to Barnette’s Conjecture.

Keywords: min-max theorem, dijoins, strongly base orderable matroid, packing common bases,

submodular function, integer decomposition property
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1 Introduction

A weighted digraph is a pair (D = (V,A), w) where D is a digraph, and w ∈ ZA≥0. We allow parallel

or opposite arcs but not loops. A dicut is a cut δ+(U) ⊆ A for some nonempty proper subset U ⊆ V

such that δ−(U) = ∅. The w-weight of an F ⊆ A, or simply the weight of F , is w(F ) =
∑

a∈F wa.

Denote by τ(D,w) the minimum weight of a dicut. A dijoin is a subset J ⊆ A such that D/J is

strongly connected; equivalently, a dijoin is an arc subset that intersects every dicut at least once. A

w-weighted packing of dijoins of size ν is a collection of ν (not necessarily distinct) dijoins such that

every arc a belongs to at mostwa of the dijoins. Denote by ν(D,w) the maximum size of aw-weighted

packing of dijoins. It follows from Weak LP Duality that τ(D,w) ≥ ν(D,w).

Question 1.1. When does equality hold in τ(D,w) ≥ ν(D,w)?

Consider replacing an arc a of nonzero weightwa ≥ 1 with wa arcs of weight 1 with the same head

and tail as a. This operation preserves both the τ and ν parameters in Question 1.1. For this reason,

we may restrict our attention to 0, 1 weights. Observe that deleting an arc of weight 0 may create new

dicuts, and thus potentially decrease the covering parameter.

Woodall [43] conjectured that τ(D,w) = ν(D,w) when w = 1, while Edmonds and Giles [17]

conjectured equality holds in general.1 Schrijver [36] refuted the Edmonds-Giles Conjecture. How-

ever, Woodall’s Conjecture remains one of the most appealing and challenging unsolved problems in

Combinatorial Optimization [9, 38, 20] with little progress made so far in the general case. In this pa-

per, we make some progress towards resolving this conjecture, as well as proposing a fix to the refuted

Edmonds-Giles Conjecture, in the general case.

1.1 Highlights of this paper

We need to define a few notions and notations. Let (D = (V,A), w) be a weighted digraph.

Definition 1.2. Given an integer τ ≥ 2, let

ρ(τ,D,w) :=
1

τ

∑
v∈V

(
w(δ+(v))− w(δ−(v)) mod τ

)
10,1 denote the all-zeros and all-ones vectors of appropriate dimensions.
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ρ(τ,D) := ρ(τ,D,1)

ρ̄(τ,D,w) :=
1

τ

∑
v∈V

(
w(δ−(v))− w(δ+(v)) mod τ

)
.

Here, for an integer n, n mod τ is the integer in {0, 1, . . . , τ − 1} that is equal to n mod τ .

Observe that ρ(τ,D,w) is a nonnegative integer since
∑

v∈V (w(δ+(v))−w(δ−(v))) = 0. Observe

further that ρ̄(τ,D,w) = ρ(τ,D′, w′), where (D′, w′) is obtained from (D,w) by replacing every arc

by the reverse arc of the same weight. For this reason, we will only work with ρ.

Definition 1.3. A k-dijoin of D is an arc subset that intersects every dicut at least k times.

Definition 1.4. A w-weighted packing J1, . . . , Jν of dijoins of D is equitable if |Ji ∩ δ+(U)| − |Jj ∩

δ+(U)| ∈ {−1, 0, 1} for all i, j ∈ [ν] and for every (inclusionwise) minimal dicut δ+(U).

Four principal results. Let τ ≥ 2 be an integer, and (D = (V,A), w) a weighted digraph where

every dicut has weight at least τ . We prove the following statements:

P1 If w = 1, then there exist a dijoin and a (τ − 1)-dijoin that are disjoint.

P2 If ρ(τ,D,w) ∈ {0, 1}, then (D,w) has an equitable w-weighted packing of dijoins of size τ .

P3 If ρ(τ,D,w) = 2, then (D,w) has a w-weighted packing of dijoins of size τ .

P4 If w = 1, τ = 3, and ρ(τ,D,w) = 3, then there exist three (pairwise) disjoint dijoins.

It should be pointed out that by replacing the function ρ by ρ̄ we get analogous results, by simply

applying the results above to the weighted digraphs obtained by reversing the directions of the arcs. It

should also be pointed out that P1 and P4 hold more generally for w > 0, by simply applying the two

results to the weighted digraphs obtained by replacing every arc a of weight wa ≥ 1 with wa arcs of

weight 1 with the same head and tail as a.

The edge. P1 and P4 do not hold for general w, and P3 does not extend to ρ(τ,D,w) ≥ 3, as

we note later in §1.2. Moreover, P2 does not extend to ρ(τ,D,w) ≥ 2, even if w = 1; we see a

demonstration of this through an example in §1.3.
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Weighted (τ, τ + 1)-bipartite digraphs. All of our results are made possible through an operation

that reduces proving the statements above for all weighted digraphs to a special class of weighted

digraphs which we define now. Given a digraph, a source is a vertex with only outgoing arcs, and a

sink is a vertex with only incoming arcs. A bipartite digraph is a digraph where every vertex is either

a source or a sink; a weighted bipartite digraph is a pair (D,w) where D is a bipartite digraph.

Definition 1.5. Given an integer τ ≥ 1, a weighted (τ, τ + 1)-bipartite digraph is a weighted bipartite

digraph where every vertex has weighted degree τ or τ+1, the vertices of weighted degree τ+1 form a

stable set, and every dicut has weight at least τ . A weighted (τ, τ +1)-bipartite digraph is sink-regular

if every sink has weighted degree τ , and is balanced if it has an equal number of sources and sinks.

Observe that in a weighted (τ, τ + 1)-bipartite digraph, the minimum weight of a dicut is τ , and

every arc belongs to a minimum weight dicut as it is incident with a source or a sink of weighted

degree τ .

Definition 1.6. Given an integer τ ≥ 2, a (τ, τ + 1)-bipartite digraph is a bipartite digraph D such

that (D,1) is a weighted (τ, τ + 1)-bipartite digraph. A (τ, τ + 1)-bipartite digraph is sink-regular if

every sink has degree τ , and is balanced if it has an equal number of sources and sinks.

Observe that a (τ, τ + 1)-bipartite digraph may have parallel arcs.

Decompose, Lift, and Reduce We reduce the problem of finding a weighted packing of dijoins,

and more generally k-dijoins, of size τ in a weighted digraph (D,w) to the same problem in a set of

weighted (τ, τ + 1)-bipartite digraphs. This is done via Decompose-and-Lift, a flexible and versatile

operation applied to (D,w) which can preserve planarity, adhere to equitability, and can also be done

for unweighted digraphs if τ ≥ 3. The weighted (τ, τ + 1)-bipartite digraphs encountered can be

picked to be sink-regular or balanced, though it is the former that is most useful for us. Subsequently,

we prove the four principal results for sink-regular weighted (τ, τ + 1)-bipartite digraphs, and then use

the Decompose, Lift, and Reduce procedure to deduce the results for all weighted digraphs.

The matroids M0,M1. Let τ ≥ 2 be an integer, and (D,w) a sink-regular weighted (τ, τ + 1)-

bipartite digraph. For each i ∈ {0, 1}, we define a matroid Mi whose ground set is the set of sources
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of weighted degree τ + 1, and whose bases are precisely the subsets Q such that |Q| = ρ(τ,D,w) and

|Q ∩ U | ≥ fi(U) for all U ∈ Ui, where Ui is some crossing family over ground set V , fi : Ui → Z is

some crossing modular function, and U1 ⊆ U0. We shall see that the ground set of Mi, i = 0, 1 can be

partitioned into τ bases. These two matroids are relevant in that if (D,w) has a w-weighted packing

of dijoins of size τ , then the ground set of the matroids can be partitioned into τ common bases of

M0,M1. (We do not know if the converse holds.)

Two secondary results. We shall see that M0 is a strongly base orderable matroid, while M1 may

not be. We prove two secondary results:

S1 If M1 is a strongly base orderable matroid, then (D,w) has a w-weighted packing of dijoins of

size τ .

S2 If the ground set of M1 can be partitioned into a 1-admissible set Q and a (τ − 1)-admissible set

Q′ such that M1|Q′ is strongly base orderable, then (D,w) has a w-weighted packing of dijoins

of size τ .

Here, for an integer k ∈ [τ ], a set is k-admissible if it is the union of k disjoint bases of M0, and also

the union of k disjoint bases of M1. We shall see that S2 is strictly stronger than S1.

1.2 Contextual background

It will be convenient to symbolize statements.

Definition 1.7. For integers τ ≥ 2 and ρ ≥ 0, symbolize the following statement:

• [wt, τ, ρ; pl, eqt]: Given a weighted digraph (D,w) that is planar such that every dicut has

weight at least τ , and satisfies ρ(τ,D,w) ≤ ρ, there exists an equitable w-weighted packing of

dijoins of size τ .

If the key wt is missing then we have the unweighted analogue of the statement, if pl is missing the

planarity condition is removed, if eqt is missing then the adjective “equitable” is removed from the

conclusion, and if the parameter ρ is missing then the upper bound on the function ρ is removed. (Any

combination of the keys and parameter can be missing.)
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[wt, τ ] is known to be true for instances (D,w) where the underlying undirected graph of D is

series-parallel [28], or more generally has no K5 \ e minor [29]. Edmonds and Giles [17] conjectured

that [wt, τ ] is true, but Schrijver refuted the conjecture [36] by exhibiting a counterexample, others

were also found later [10, 42]. See Figure 1 for an illustration of three counterexamples; all of these

examples disprove the statement [wt, τ ] for τ = 2. An extension of Schrijver’s example displayed in

Figure 1 disproves [wt, τ ] for any τ ≥ 2: for each of the three paths of solid arcs, change the weight

of the middle arc from 1 to τ − 1 [25]; this extension shows that [wt, τ, 3; pl] is false for any integer

τ ≥ 2.

That [wt, 2] is false implies that P1 does not hold for general weights. We already saw that P2 does

not extend to ρ(w, τ,D) ≥ 2 since [2, 2; pl, eqt] is false in general. That [wt, τ, 3; pl] is false for any

τ ≥ 2 implies that P3 does not hold for ρ(w, τ,D) ≥ 3, and P4 does not hold for general weights even

for τ = 3.

A super source in a digraph is a source that has a directed path to every sink; a super sink is defined

similarly. It has been conjectured that [wt, τ ] is true for weighted digraphs (D,w) where D has a super

source and a super sink [24]. Schrijver [37], and Feofiloff and Younger [18], proved this conjecture for

source-sink connected instances, i.e. digraphs in which every source has a directed path to every sink.

It has been conjectured in a recent paper [7] that [wt, τ ] is true for weighted digraphs (D,w) where

D[{a ∈ A : wa 6= 0}] is a spanning subdigraph of D that is connected as an undirected graph. In the

same paper, this conjecture was proved in two special cases: τ = 2 and D is planar (we revisit this

result in §8), or τ = 2 and D[{a ∈ A : wa 6= 0}] is a caterpillar subdivision.

Finally, Woodall’s Conjecture predicts that [τ ] is true [43]. The correctness of [τ ] for τ = 2 is

folklore (see [38], Theorem 56.3), which is convenient as the Decompose, Lift, and Reduce procedure

in the unweighted setting only works for τ ≥ 3. The correctness of [τ ], or even [τ ; pl], remains

unknown for any τ ≥ 3. Recently, Mészáros [34] proved the statement [τ, 0] by using a general

result on totally unimodular matrices; see Lemma 9 of that paper, the argument essentially proves

[wt, τ, 0; eqt]. (Our proofs of [wt, τ, 1; eqt] and [wt, τ, 2] use different techniques.) In an elegant fashion,

he then combines [τ, 0] with Olson’s Lemma from Number Theory to prove [q] where q is a prime power

and the underlying undirected graph of D is (q − 1, 1)-partition-connected.
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Figure 1: Solid arcs have weight 1, and dashed arcs have weight 0. The top digraph is due to Schri-

jver [36] while the other two instances are from [10].

1.3 Some examples

About P2. P2 does not extend to ρ(τ,D,w) ≥ 2, even if w = 1. To see this, consider the digraph

D displayed in Figure 2. It can be readily checked that every dicut has size at least τ := 2, and

ρ(τ,D) = 2. We claim that the digraph has no equitable 1-weighted packing of dijoins of size τ .

Suppose otherwise, and let J1, J2 be such a packing. We may assume that J1 picks two of the arcs

incident with the source 1, while J2 picks the other arc. By symmetry, we may assume that (1, 2) ∈ J1.

Assume in the first case that (1, 4) ∈ J1 and (1, 3) ∈ J2. By equitability, J1 must pick exactly

two arcs from the displayed dicut δ+({1, 3, 7}). Thus, (7, 5), (7, 6) ∈ J2, so (2, 5), (4, 6) ∈ J1,

so equitability along the displayed dicut δ+({1, 2}) tells us (2, 8) ∈ J2, and equitability along the

displayed dicut δ+({1, 4}) tells us (4, 8) ∈ J2, a contradiction as the sink 8 is not incident with an

arc from J1. Assume in the remaining case that (1, 3) ∈ J1 and (1, 4) ∈ J2. By equitability along

δ+({1, 4}), (4, 6), (4, 8) ∈ J2, so (7, 6), (2, 8) ∈ J1. By equitability along δ+({1, 3, 7}), (7, 5) ∈ J2,

so (2, 5) ∈ J1, a contradiction to the equitability of δ+({1, 2}).

10
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Figure 2: A counterexample to [2, 2; eqt].

About P1. Let D = (V,A) be a digraph where every dicut has size at least τ ≥ 2. We mentioned

in §1.2 that D has two disjoint dijoins. In fact, let J be any minimal dijoin. Then reversing the arcs

of J makes the digraph strongly connected (see [38], Theorem 55.1), implying that J does not contain

a dicut, implying in turn that A − J is a dijoin. Given this observation, and P1, a natural question is

whether A− J is necessarily a (τ − 1)-dijoin? Unfortunately, the answer is no, if τ ≥ 3.

For example, suppose D is the bipartite digraph with sources {1, 2, 3} and sinks {4, 5, 6}

and an arc from every source to every sink, and τ = 3. Then J = {(1, 4), (1, 5), (2, 6), (3, 6)}

is a minimal dijoin, but A− J is not a (τ − 1)-dijoin because |δ+({1})− J | = τ − 2.

Despite the negative answer, P1 guarantees the existence of some minimal dijoin J? such that

A− J? is a (τ − 1)-dijoin.

About P4. A natural question is whether A − J? can necessarily be partitioned into τ − 1 dijoins?

Unfortunately, the answer is no, if τ ≥ 3. Let us demonstrate this through an important example,

displayed in Figure 3, which is analyzed further in §7.

Figure 3 displays a (3, 4)-bipartite digraph D27 = (V,A) on 27 vertices, where four

distinguished dicuts are highlighted. Denote by J? the set of dashed arcs. It can be

checked that J? is a minimal dijoin, and A− J? is a 2-dijoin. However, A− J? cannot be

partitioned into two dijoins.
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Suppose for a contradiction that A − J? is partitioned into dijoins R,B. Call the arcs in

R red, and the arcs in B blue. Denote by P12 the 12-path in A − J?, by P34 the 34-path

in A − J?, and by P56 the 56-path in A − J?. Since every internal vertex of each path is

a source or a sink incident with exactly two arcs from A − J?, it follows that the arcs of

each path are alternately colored red and blue. A simple argument now tells us that one of

the four dicuts displayed is monochromatic, in that all the arcs of A− J? in the dicut have

the same color, implying in turn that one of R,B is disjoint from one of the four dicuts, a

contradiction.

It can be readily checked that ρ(3, D27) = 3. Thus, despite the negative answer, P4 guarantees the

existence of three disjoint dijoins.

1

2

3

4

56

7

8

9

Figure 3: The (3, 4)-bipartite digraph D27 = (V,A). The dashed and solid arcs partition the arc set

into a minimal dijoin J? and a 2-dijoinA−J?, respectively. The four dicuts depicted show thatA−J?

cannot be partitioned into two dijoins.

1.4 Outline of the paper

The four principal results P1-P4, as well as the two secondary results S1-S2, are proved in five stages.

Let (D,w) be a weighted digraph where every dicut has weight at least τ , for some integer τ ≥ 2.
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Stage 0 In §2 we introduce the Decompose, Lift, and Reduce procedure which reduces the problem of

finding a weighted packing of dijoins, or k-dijoins, of size τ in weighted digraphs to the same

problem for a set of weighted (τ, τ + 1)-bipartite digraphs obtained via the Decompose-and-Lift

operation. The operation applies to (D,w) and turns it into a set of weighted (τ, τ + 1)-bipartite

digraphs. If τ ≥ 3 and w = 1, then the operation can turn D into a set of (τ, τ + 1)-bipartite

digraphs. The weighted (τ, τ + 1)-bipartite digraphs can be chosen sink-regular or balanced.

After this stage, we assume that (D,w) is a sink-regular weighted (τ, τ + 1)-bipartite digraph.

Stage 1 In §3 we interpret ρ(τ,D,w) as the discrepancy between the number of sources and the number

of sinks of D. We also see that every dijoin used in a weighted packing of size τ , if any, is a

rounded 1-factor. We then apply the classical “alternating path technique” to prove P2.

Stage 2 In §4 we discuss crossing families and crossing submodular functions. We then review two

results of Frank and Tardos [21] and Fujishige [22] on matroids and box-TDI systems from

crossing submodular functions, as well as the integer decomposition property of matroid base

polytopes. By applying these results, we introduce the matroid M1, and prove that its ground

set can be partitioned into τ bases. We then leverage rounded 1-factors, and more generally the

notion of perfect b-matchings, to prove P1.

Stage 3 In §5 we introduce the matroid M0. By using results from Stage 1, we see that M0 is a strongly

base orderable matroid whose ground set can be partitioned into τ bases. We introduce and

study admissible sets, which are common bases of M0,M1. We then use a result of Davies

and McDiarmid [13] to prove S1. Finally, by using a result of Brualdi [5] on symmetric basis

exchange in matroids, we prove P3.

Stage 4 In §6 we unravel and extend some of the notions and results from Stages 2 and 3. More specif-

ically, we introduce and study the notion of k-admissibility, extend the second principal result

to the weighted setting under a certain common base packing assumption, and then prove S2.

A result of Brualdi [6] guides us to study M(K4), the cycle matroid of K4. We then study

M(K4)-restrictions in matroids of rank 3 with at most 9 elements, and then prove P4.
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Stage 0 acts as the gateway to weighted (τ, τ + 1)-bipartite digraphs, and by only reading the

introduction to §2 and digesting the statements of Theorem 2.16 and Theorem 2.17, the hurried reader

can move on to Stages 1-4, which should be read in series as the ideas unfold further stage by stage.

In §7 we introduce two important examples addressing several questions raised in §4, §5 and §6.

Finally, in §8, we present several directions for future research towards tackling Woodall’s Conjecture,

proposing a fix to the refuted Edmonds-Giles Conjecture, and resolving the τ = 2 Conjecture for

dijoins, and also make a connection to Barnette’s Conjecture.

1.5 Preliminaries and notation

Let us fix some notation and terminology.

Graphs. Given a graph G = (V,E), a cycle is a subset C ⊆ E where every vertex v ∈ V is incident

with an even number of edges from C. In particular, ∅ is a cycle. A circuit is a nonempty cycle that

does not contain another nonempty cycle. For U ⊆ V , denote by G[U ] the induced subgraph on vertex

set U . For F ⊆ E, denote by G[F ] the subgraph with edge set F .

Digraphs. Sometimes, when there is no risk of ambiguity, we treat a digraph D as an undirected

graph G obtained by dropping the orientation of the arcs, which we call the the underlying the undi-

rected graph. For example, we denote δD(X) := δ+D(X) ∪ δ−D(X) and degD(x) := deg+D(x) +

deg−D(x). We say D is connected as an undirected graph if G is connected, a connected component

of D is simply a connected component of G, D is planar if G is planar, D is a plane digraph if G

is a plane graph, i.e. G is a planar graph embedded in the plane. Minor operations in D are defined

similarly as for the undirected graph G; loops created after contraction are then deleted of course. For

U ⊆ V , denote by D[U ] the induced subdigraph on vertex set U . For F ⊆ A, denote by D[F ] the

subdigraph with arc set F .

Matroids. LetM be a matroid over ground setE. M is strongly base orderable if for every two bases

B1, B2, there exists a bijection π : B1−B2 → B2−B1 such that B14(X ∪π(X)), B24(X ∪π(X))

are bases for all X ⊆ B1 −B2 [4]. Given X ⊆ E, the restriction M |X is the deletion M \ (E −X).
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Given a graph G = (V,E), the cycle matroid of G, denoted M(G), is the matroid over ground set E

whose circuits correspond to the circuits of G.

Clutters. Some knowledge of Clutter Theory will be useful and insightful. Let A be a finite set

of elements, and C a family of subsets of A called members. C is a clutter over ground set A if no

member contains another [16]. A cover of C is a subset of A that intersects every member of C. A

cover of C is minimal if it does not contain another cover. The family of minimal covers of C forms

another clutter over the same ground set, called the blocker of C, and denoted b(C). It is well-known

that b(b(C)) = C [16, 27]. We call (C, b(C)) a blocking pair.

Remark 1.8. Let D = (V,A) be a digraph. Then the clutter of minimal dijoins and the clutter of

minimal dicuts form a blocking pair.

Let w ∈ ZA≥0. The w-weight, or simply weight, of a cover B is w(B) =
∑

a∈Awa. The minimum

weight of a cover is denoted τ(C, w). A w-weighted packing of (C, w) of size ν is a collection of ν

members of C such that every element a ∈ A is contained in at most wa of the members. A 1-weighted

packing is simply called a packing. Denote by ν(C, w) the maximum size of a w-weighted packing.

It can be readily checked from Weak LP Duality that τ(C, w) ≥ ν(C, w). We say that a w-weighted

packingC1, . . . , Cν is equitable if for everyB ∈ b(C), the difference |Ci∩B|−|Cj∩B| is in {−1, 0, 1}

for all i, j ∈ [ν].

Let a ∈ A. The deletion C \ a is the clutter over ground set A − {a} whose members are C ∈

C, a /∈ C, while the contraction C/a is the clutter over ground set A − {a} whose members are the

minimal sets in {C − {a} : C ∈ C} [23]. Deletion in C corresponds to contraction in b(C), and vice

versa [39]. A clutter obtained from C after a series of contractions is called a contraction minor of C;

deletion minor and more generally minor are defined similarly.

The clutter obtained from C after replicating a is the clutter over ground set A ∪ {a′} for a new

element a′ whose members are those in C ∪ {C4{a, a′} : a ∈ C ∈ C}. The clutter obtained from

C after duplicating a is the clutter over ground set A ∪ {a′} for a new element a′ whose members are

those in {C ∈ C : a /∈ C} ∪ {C ∪ {a′} : a ∈ C ∈ C}. It can be readily checked that replication in C

corresponds to duplication in b(C), and vice versa.
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Remark 1.9. Let C′ be obtained from C after deleting each a ∈ A with wa = 0, and replicating each

a ∈ A with wa ≥ 1 exactly wa − 1 times. Then (C, w) has an (equitable) w-weighted packing of size

ν if, and only if, C′ has an (equitable) packing of size ν.

Let C1, . . . , Ck be clutters over disjoint ground sets A1, . . . , Ak, respectively. The product of

C1, . . . , Ck, denoted
∏
i∈[k] Ci, is the clutter over ground set ∪i∈[k]Ai whose members are the mini-

mal sets in {∪i∈[k]Ci : Ci ∈ Ci, i ∈ [k]}. The coproduct of C1, . . . , Ck, denoted ⊗i∈[k]Ci, is the clutter

over ground set ∪i∈[k]Ai whose members are the minimal sets in ∪i∈[k]Ci [2].

Remark 1.10. b
(∏

i∈[k] Ci
)

= ⊗i∈[k]b(Ci) and b
(
⊗i∈[k] Ci

)
=
∏
i∈[k] b(Ci).

2 Decompose, Lift, and Reduce Procedure

In this section we introduce the Decompose, Lift, and Reduce procedure. In §2.1, we see how ev-

ery weighted digraph without a “pseudo-cut-vertex” can be decomposed into “irreducible” weighted

digraphs. Then, after introducing a gadget in §2.2, we see in §2.3 how every irreducible weighted

digraph where every dicut has weight at least τ , can be lifted to a weighted (τ, τ +1)-bipartite digraph.

Putting the two together, we obtain the Decompose-and-Lift operation in §2.4. Finally, in §2.5, we see

how the problem of packing dijoins, or more generally k-dijoins, of size τ in arbitrary weighted di-

graphs can be reduced to the same problem in weighted (τ, τ +1)-bipartite digraphs. Moving forward,

we shall need the following definition.

Definition 2.1. Given a digraph D, denote by C(D) the clutter of minimal dijoins of D. Given a

weighted digraph (D,w), denote by C(D,w) the clutter obtained from C(D) after deleting each ele-

ment a with wa = 0 and replicating each element a with wa ≥ 1 exactly wa − 1 times.

2.1 Decomposing

Given a weighted digraph (D,w), and a vertex v, denote by (D,w) \ v the weighted digraph obtained

after deleting v and all the arcs incident with it, and dropping the corresponding weights from w.

Definition 2.2. Let (D,w) be a weighted digraph with no dicut of weight 0. A pseudo-cut-vertex is a

vertex v such that (D,w) \ v has a dicut of weight 0.
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Moving forward, we shall need the following “triangle inequality”.

Remark 2.3. Let τ ≥ 2 be an integer. Then (a + b) mod τ is either (a mod τ) + (b mod τ) or

(a mod τ) + (b mod τ) − τ . Consequently, for any finite set S of integers,
(∑

a∈S a
)

mod τ ≤∑
a∈S(a mod τ).

For a vector w ∈ ZA, and a subset A′ ⊆ A, denote by w|A′ the subvector of w restricted to the

entries in A′.

Lemma 2.4. Let (D = (V,A), w) be a weighted digraph that has no dicut of weight 0, and has a

pseudo-cut-vertex. Then there exist weighted digraphs (D1, w1), (D2, w2) without dicuts of weight 0

such that the following statements hold:

1. |V (D1)|, |V (D2)| ≤ |V | − 1, A(D1) ∪ A(D2) = A, every arc of (D,w) of nonzero weight

belongs to exactly one of A(D1), A(D2), and w1 = w|A(D1), w2 = w|A(D2),

2. if D is planar, then so is each Di, i ∈ [2]

3. ρ(τ,Di, wi) ≤ ρ(τ,D,w) for every integer τ ≥ 2 and i ∈ [2], and

4. C(D,w) = C(D1, w1)× C(D2, w2).

Proof. After replacing every arc a of nonzero weight with wa arcs of weight 1 with the same head

and tail, if necessary, we may assume that w ∈ {0, 1}A. Let u be a pseudo-cut-vertex. Let δ+(U ′1)

be a dicut of (D,w) \ u of weight 0; let U ′2 := V − u − U ′1. Let U1 := U ′1 ∪ {u} ⊆ V and

U2 := U ′2 ∪ {u} ⊆ V . Let (D1, w1) be obtained from (D,w) by replacing U2 with a single vertex u1,

where all the arcs of D with both ends in U2 are removed, all the arcs with exactly one end in U2 are

now attached to u1 and have the same weight, and all the other arcs remain intact with the same weight.

Similarly, let (D2, w2) be obtained from (D,w) by replacing U1 with a single vertex u2, where all the

arcs of D with both ends in U1 are removed, all the arcs with exactly one end in U1 are now attached to

u2 and have the same weight, and all the other arcs remain intact with the same weight. Observe that

A(D1) ∪A(D2) = A, and A(D1) ∩A(D2) is equal to the set of arcs from U ′1 to U ′2 all of which have

weight 0 in (D,w). Subsequently, (1) holds.
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Claim 1. D[Ui], i = 1, 2 is connected as an undirected graph.

Proof of Claim. Suppose for a contradiction D[Ui] is disconnected as an undirected graph, and let

W ⊆ Ui be a connected component of D[Ui] that excludes u, i.e. W ⊆ U ′i . Then δD(W ) contains

only arcs that go between U ′1 and U ′2, so δD(W ) yields a dicut of (D,w) of weight 0, a contradiction

as every dicut of (D,w) has nonzero weight. ♦

Claim 2. If D is planar, then so is Di, i = 1, 2. That is, (2) holds.

Proof of Claim. By definition, Di is obtained from D by shrinking U3−i. By Claim 1, D[U3−i] is

connected as an undirected graph, so Di can be viewed as a contraction minor of D, thereby proving

the claim as contraction preserves planarity. ♦

Claim 3. ρ(τ,Di, wi) ≤ ρ(τ,D,w) for every integer τ ≥ 2 and i = 1, 2. That is, (3) holds.

Proof of Claim. For every vertex v of Di other than ui, w(δ+Di(v)) − w(δ−Di(v)) = w(δ+D(v)) −

w(δ−D(v)). Moreover, w(δ+Di(ui))− w(δ−Di(ui)) = w(δ+D(U3−i))− w(δ−D(U3−i)). Subsequently,

τ · ρ(τ,Di, wi)

=
∑

v∈V (Di)

(w(δ+Di(v))− w(δ−Di(v)) mod τ)

=
∑
v∈U ′i

(w(δ+D(v))− w(δ−D(v)) mod τ) + (w(δ+Di(ui))− w(δ−Di(ui)) mod τ)

=
∑
v∈U ′i

(w(δ+D(v))− w(δ−D(v)) mod τ) + (w(δ+D(U3−i))− w(δ−D(U3−i)) mod τ)

=
∑
v∈U ′i

(w(δ+D(v))− w(δ−D(v)) mod τ)

+

 ∑
v∈U3−i

(w(δ+D(v))− w(δ−D(v)))

 mod τ


≤
∑
v∈U ′i

(w(δ+D(v))− w(δ−D(v)) mod τ)

+
∑

v∈U3−i

(w(δ+D(v))− w(δ−D(v)) mod τ) by Remark 2.3

= τ · ρ(τ,D,w),

so ρ(τ,Di, wi) ≤ ρ(τ,D,w). ♦
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Claim 4. C(D,w) = C(D1, w1)× C(D2, w2), that is, (4) holds.

Proof of Claim. By Remark 1.10, it suffices to prove b(C(D,w)) = b(C(D1, w1)) ⊗ b(C(D2, w2)).

Since (Di, wi) is obtained from (D,w) by identifying vertices, every dicut of (Di, wi) is also a dicut

of (D,w). Thus, every set in b(C(D1, w1))⊗ b(C(D2, w2)) contains a set of b(C(D,w)). Conversely,

let δ+D(W ) be a dicut of (D,w). Define W ′ as follows:

Case 1: u ∈W and (V −W ) ∩ U ′2 6= ∅. In this case, let W ′ := W ∪ U ′1.

Case 2: u ∈W and (V −W ) ∩ U ′2 = ∅. In this case, let W ′ := W .

Case 3: u /∈W and W ∩ U ′1 6= ∅. In this case, let W ′ := W ∩ U ′1.

Case 4: u /∈W and W ∩ U ′1 = ∅. In this case, let W ′ := W .

We know that every arc of D between U ′1, U
′
2 goes from U ′1 to U ′2 and has weight 0. Thus, δ+D(W ′)

remains a dicut of D whose set of weight-1 arcs is contained in the set of weight-1 arcs of δ+D(W ).

Moreover, in cases 2 and 3, δ+D(W ′) is also a dicut ofD1, while in cases 1 and 4, δ+D(W ′) is also a dicut

of D2. In both cases, we proved that δ+D(W )∩{a ∈ A : wa = 1} contains the set of weight-1 arcs of a

dicut of some (Di, wi). Thus, every set in b(C(D,w)) contains a set of b(C(D1, w1))⊗ b(C(D2, w2)),

as required. ♦

We have proved (1)-(4). Observe that (4) implies that (Di, wi) has no dicut of weight 0, thereby

finishing the proof.

Definition 2.5. A weighted digraph is irreducible if it has no dicut of weight 0, and no pseudo-cut-

vertex.

Theorem 2.6 (Decomposing). Let (D = (V,A), w) be a weighted digraph that has no dicut of weight

0. Then there exist irreducible weighted digraphs (Di, wi), i ∈ I for a finite index set I , such that the

following statements hold:

1.
⋃
i∈I A(Di) = A, every arc (D,w) of nonzero weight belongs to exactly one of (Di, wi), i ∈ I ,

and wi = w|A(Di), i ∈ I ,
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2. if D is planar, then so is Di, i ∈ I ,

3. ρ(τ,Di, wi) ≤ ρ(τ,D,w) for every integer τ ≥ 2 and i ∈ I , and

4. C(D,w) =
∏
i∈I C(Di, wi).

Proof. This decomposition is obtained by repeatedly applying Lemma 2.4, a process that is bound to

terminate since at every iteration, the number of vertices of each “piece” strictly decreases.

The notion of a pseudo-cut-vertex in weighted digraphs can be viewed as an extension of the

notion of a cut-vertex in graphs. In this vein, irreducibility in weighted digraphs is an extension of

2-connectivity in graphs.

Theorem 2.7 (Unweighted Decomposing). Let D = (V,A) be a digraph that is connected as undi-

rected graph. Then there exist digraphs Di, i ∈ I for a finite index set I , each of which is 2-connected

as an undirected graph, such that the following statements hold:

1. A(Di), i ∈ I partition A,

2. if D is planar, then so is Di, i ∈ I ,

3. ρ(τ,Di) ≤ ρ(τ,D) for every integer τ ≥ 2 and i ∈ I , and

4. C(D) =
∏
i∈I C(Di).

Proof. This follows immediately from applying Theorem 2.6 to the weighted digraph (D,1).

2.2 A gadget needed for lifting

Having described decomposing, we move on to lifting wherein an irreducible weighted digraph is lifted

to a weighted (τ, τ + 1)-bipartite digraph, for some integer τ ≥ 2 that is a lower bound on the weight

of every dicut of the original weighted digraph. By a routine argument, we shall assume that every

original arc has weight 0 or 1. We then replace each original vertex v that is neither a source nor a

sink of weighted degree τ , with a certain gadget, and the original arcs attached to v are then joined to

certain vertices of the gadget, constructed in Lemma 2.8 below.
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The gadget is a weighted digraph (D,w), where D is plane, with certain weighted degree con-

ditions, and the vertices of attachment appear in some clockwise ordering on the boundary of the

embedding; see Figure 4. In the case that the underlying digraph of the original weighted digraph is

plane, the clockwise ordering agrees with the clockwise ordering of the original arcs attached to v in

the plane embedding. There are 4 types of original arcs that can be attached to v, leading to 4 types

of vertices of attachment, depending on whether the original arc leaves or enters v, denoted by + or

−, and whether the original arc has weight 0 or 1. We shall represent the clockwise ordering and the 4

types with a sequence s with entries in {(+, 0), (+, 1), (−, 0), (−, 1)}.
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�(s4)

<latexit sha1_base64="2ENPQBF9NAp/PlRqH/+pbInHxiQ=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1iEuimJFHVZdOOygn1AE8JkOmmHTh7MTIQair/ixoUibv0Pd/6NkzYLbT0wcDjnXu6Z4yecSWVZ30ZpZXVtfaO8Wdna3tndM/cPOjJOBaFtEvNY9HwsKWcRbSumOO0lguLQ57Trj29yv/tAhWRxdK8mCXVDPIxYwAhWWvLMIycZsZoTYjUKBB5ncurZZ55ZterWDGiZ2AWpQoGWZ345g5ikIY0U4VjKvm0lys2wUIxwOq04qaQJJmM8pH1NIxxS6Waz9FN0qpUBCmKhX6TQTP29keFQykno68k8plz0cvE/r5+q4MrNWJSkikZkfihIOVIxyqtAAyYoUXyiCSaC6ayIjLDAROnCKroEe/HLy6RzXrcv6o27RrV5XdRRhmM4gRrYcAlNuIUWtIHAIzzDK7wZT8aL8W58zEdLRrFzCH9gfP4ALxuVDw==</latexit>

�(s1)
<latexit sha1_base64="CnQKPsjHf9zcVnDmvLFHF0a8XjI=">AAAB/XicbVDLSsNAFL3xWesrPnZuBotQNyUpRV0W3bisYB/QhDCZTtqhkwczE6GG4q+4caGIW//DnX/jpM1CWw8MHM65l3vm+AlnUlnWt7Gyura+sVnaKm/v7O7tmweHHRmngtA2iXksej6WlLOIthVTnPYSQXHoc9r1xze5332gQrI4uleThLohHkYsYAQrLXnmsZOMWNUJsRoFAo8zOfXq555ZsWrWDGiZ2AWpQIGWZ345g5ikIY0U4VjKvm0lys2wUIxwOi07qaQJJmM8pH1NIxxS6Waz9FN0ppUBCmKhX6TQTP29keFQykno68k8plz0cvE/r5+q4MrNWJSkikZkfihIOVIxyqtAAyYoUXyiCSaC6ayIjLDAROnCyroEe/HLy6RTr9kXtcZdo9K8LuoowQmcQhVsuIQm3EIL2kDgEZ7hFd6MJ+PFeDc+5qMrRrFzBH9gfP4AMKCVEA==</latexit>

�(s2)

<latexit sha1_base64="YFfu6n6FIR8H9cbWwuGmBoP/b9U=">AAAB/XicbVDLSsNAFL3xWesrPnZugkWom5JoUZdFNy4r2Ac0IUymk3boZBJmJkINxV9x40IRt/6HO//GSZuFth4YOJxzL/fMCRJGpbLtb2NpeWV1bb20Ud7c2t7ZNff22zJOBSYtHLNYdAMkCaOctBRVjHQTQVAUMNIJRje533kgQtKY36txQrwIDTgNKUZKS7556CZDWnUjpIahQKNMTvzzU9+s2DV7CmuROAWpQIGmb365/RinEeEKMyRlz7ET5WVIKIoZmZTdVJIE4REakJ6mHEVEetk0/cQ60UrfCmOhH1fWVP29kaFIynEU6Mk8ppz3cvE/r5eq8MrLKE9SRTieHQpTZqnYyquw+lQQrNhYE4QF1VktPEQCYaULK+sSnPkvL5L2Wc25qNXv6pXGdVFHCY7gGKrgwCU04Baa0AIMj/AMr/BmPBkvxrvxMRtdMoqdA/gD4/MHMiWVEQ==</latexit>

�(s3)

Figure 4: An illustration of a gadget of Lemma 2.8 replacing original vertex v. Solid arcs have weight

1, and dashed arcs have weight 0. The sequence entries are equal to s1 = (−, 0), s2 = (+, 0),

s3 = (−, 1), and s4 = (+, 1).

Lemma 2.8. Let τ ≥ 2 be an integer, and s a finite sequence with entries in {(+, 0), (+, 1), (−, 0),

(−, 1)}. Let s(i, j) be the number of entries of s equal to (i, j). Take integers `+, `− ≥ 0 such

that `+ − `− ≡ s(+, 1) − s(−, 1) (mod τ). Then there exists a weighted digraph (D,w) :=

(D(τ, s, `+, `−), w(τ, s, `+, `−)) such that the following statements hold:

1. There are no two opposite arcs, and every arc has weight 1, 2, b τ−12 c, d τ−12 e or d τ2e. In particu-

lar, if τ ≥ 3, then every arc has nonzero weight.

2. D is a plane bipartite digraph, and every vertex of (D,w) has weighted degree τ −1, τ or τ +1.

3. Every dicut of (D,w) has weight at least τ − 1.
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4. (D,w) has exactly `+ + `− vertices of weighted degree τ + 1, `+ of which are sources and so

`− of which are sinks, and no two of which are adjacent in D.

5. (D,w) has exactly s(+, 1) + s(−, 1) vertices of weighted degree τ − 1.

6. There is an injection φ : s→ V (D), where φ(s1), φ(s2), . . . , φ(s|s|) appear in clockwise order-

ing on the boundary of a plane drawing of D, and φ(si) is a source of weighted degree τ − 1

if si = (+, 1), it is a source of weighted degree τ if si = (+, 0), it is a sink of weighted degree

τ − 1 if si = (−, 1), and it is a sink of weighted degree τ if si = (−, 0).

Proof. We construct (D,w) in four steps. Let k′ := s(−, 0) + s(−, 1) + τs(+, 0) + (τ − 1)s(+, 1),

and k an integer sufficiently large such that

i. k − k′ + `− ≡ 0 (mod τ), and so k − s(−, 0) + `+ ≡ 0 (mod τ) because `+ − `− ≡

s(+, 1)− s(−, 1) (mod τ),

ii. there exist integers n1, . . . , n k−k′+`−
τ

such that τ
2 ≤ ni ≤ τ and

∑
i ni = k − k′, and so

0 ≤ τ − ni ≤ ni and
∑

i(τ − ni) = `−,

iii. there exist integers m1, . . . ,m k−s(−,0)+`+
τ

such that τ2 ≤ mj ≤ τ and
∑

jmj = k− s(−, 0), and

so 0 ≤ τ −mj ≤ mj and
∑

j(τ −mj) = `+.

Let I(+, j) := {i : si = (+, j)} and I(−, j) := {i : si = (−, j)}.

Step 1: The weighted rectangle. Let us start with a bipartite digraph with

• sources: a0, a1, . . . , ak, a′0, a
′
1, . . . , a

′
k,

• sinks: b0, b1, . . . , bk, b′0, b
′
1, . . . , b

′
k,

• undirected circuit: (a0, b0, a1, b1, . . . , ak, bk, a
′
k, b
′
k, . . . , a

′
1, b
′
1, a
′
0, b
′
0),

• additional arcs: a1b′1, a2b
′
2, . . . , akb

′
k.

We shall work with the plane embedding of the digraph displayed in Figure 5. We assign the following

arc weights as displayed in Figure 5:

22



• (red) arcs of weight d τ−12 e: aibi, a′ib′i for i = 0, 1, . . . , k.

• (green) arcs of weight b τ−12 c: aibi−1, a′i−1b′i for i = 1, . . . , k. Note that if τ = 2, then these arcs

become weight-0 arcs.

• (orange) arcs of weight d τ2e: a0b′0, a′kbk.

• (blue) arcs of weight 1: aib′i for i = 1, . . . , k.

We call this weighted digraph the weighted rectangle. Observe that if τ ≥ 3, then every arc has nonzero

weight.

We claim that every dicut of the weighted rectangle has weight at least τ − 1. To this end, note that

every cut of the weighted rectangle has weight at least τ − 2, as it contains a Hamilton circuit where

every arc has weight≥ b τ−12 c. Moreover, every cut of weight τ−2, if any, must separate {ai, b′i, bi, a′i}

from {ai+1, b
′
i+1, bi+1, a

′
i+1} for some 0 ≤ i ≤ k − 1, implying in turn that it is not a dicut. Thus,

every dicut of the weighted rectangle has weight at least τ − 1.
<latexit sha1_base64="fHAPDJ1EOjm5YtVk98CJk0xXw3U=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0QPtuv1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1bus1u5rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwDqAY2R</latexit>a0

<latexit sha1_base64="320VPklRgEWhB8hnnEiRh3xn5cE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0QPtev1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1bus1u5rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwDrhY2S</latexit>a1
<latexit sha1_base64="WxkZs5xRs38lJD4l9+FXgHm0HfI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOle9qv9csVt+rOQVaJl5MK5Gj2y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnXqt5FtX5XrzSu8ziKcAKncA4eXEIDbqEJLWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QPtCY2T</latexit>a2

<latexit sha1_base64="/+pCNrDhGFaGzFqE2Uj+O57VEjE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0QPvjfrniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqndZrd3XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gBDfI3M</latexit>ak
<latexit sha1_base64="7l7wfr1dDTrpj/edJC607JugGAw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0EPTdfrniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqndZrd3XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gDrh42S</latexit>

b0
<latexit sha1_base64="i/nlPQeTyxQJxZrfosD8uE+lObI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0EPS9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqndZrd3XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gDtC42T</latexit>

b1
<latexit sha1_base64="O6d+nGVqa7cOI3APXzvsnaA/t1Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0EPTH/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVe+yWruvVeo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AFFAo3N</latexit>

bk

<latexit sha1_base64="rZ3K/zz19nE4kvYsm20E8voySMU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbRU0mkqMeiF48VTFtoQ9lsN+3S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRW8epItQnMY9VN8Saciapb5jhtJsoikXIaSec3OV+54kqzWL5aKYJDQQeSRYxgk0u4fOBO6jW3Lo7B1olXkFqUKA1qH71hzFJBZWGcKx1z3MTE2RYGUY4nVX6qaYJJhM8oj1LJRZUB9n81hk6s8oQRbGyJQ2aq78nMiy0norQdgpsxnrZy8X/vF5qopsgYzJJDZVksShKOTIxyh9HQ6YoMXxqCSaK2VsRGWOFibHxVGwI3vLLq6R9Wfeu6o2HRq15W8RRhhM4hQvw4BqacA8t8IHAGJ7hFd4c4bw4787HorXkFDPH8AfO5w9Kw43C</latexit>

a0
0

<latexit sha1_base64="9dfWR4DHbm8IBu5VAjZpLOD+DWk=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbRU0mkqMeiF48VTFtoQ9lsN+3S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRW8epItQnMY9VN8Saciapb5jhtJsoikXIaSec3OV+54kqzWL5aKYJDQQeSRYxgk0u4fOBN6jW3Lo7B1olXkFqUKA1qH71hzFJBZWGcKx1z3MTE2RYGUY4nVX6qaYJJhM8oj1LJRZUB9n81hk6s8oQRbGyJQ2aq78nMiy0norQdgpsxnrZy8X/vF5qopsgYzJJDZVksShKOTIxyh9HQ6YoMXxqCSaK2VsRGWOFibHxVGwI3vLLq6R9Wfeu6o2HRq15W8RRhhM4hQvw4BqacA8t8IHAGJ7hFd4c4bw4787HorXkFDPH8AfO5w9MR43D</latexit>

a0
1

<latexit sha1_base64="7y4Qw40aqzv2AiJxU4DNEPuMNF8=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbRU0mkqMeiF48VTFtoQ9lsN+3S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRW8epItQnMY9VN8Saciapb5jhtJsoikXIaSec3OV+54kqzWL5aKYJDQQeSRYxgk0u4fPBZFCtuXV3DrRKvILUoEBrUP3qD2OSCioN4VjrnucmJsiwMoxwOqv0U00TTCZ4RHuWSiyoDrL5rTN0ZpUhimJlSxo0V39PZFhoPRWh7RTYjPWyl4v/eb3URDdBxmSSGirJYlGUcmRilD+OhkxRYvjUEkwUs7ciMsYKE2PjqdgQvOWXV0n7su5d1RsPjVrztoijDCdwChfgwTU04R5a4AOBMTzDK7w5wnlx3p2PRWvJKWaO4Q+czx+kL439</latexit>

a0
k

<latexit sha1_base64="ArhFHM64DjWHtYpS/eUoXGndl/U=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbRU0mkqMeiF48VTFtoQ9lsN+3S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRW8epItQnMY9VN8Saciapb5jhtJsoikXIaSec3OV+54kqzWL5aKYJDQQeSRYxgk0uhecDd1CtuXV3DrRKvILUoEBrUP3qD2OSCioN4VjrnucmJsiwMoxwOqv0U00TTCZ4RHuWSiyoDrL5rTN0ZpUhimJlSxo0V39PZFhoPRWh7RTYjPWyl4v/eb3URDdBxmSSGirJYlGUcmRilD+OhkxRYvjUEkwUs7ciMsYKE2PjqdgQvOWXV0n7su5d1RsPjVrztoijDCdwChfgwTU04R5a4AOBMTzDK7w5wnlx3p2PRWvJKWaO4Q+czx9MSo3D</latexit>

b00
<latexit sha1_base64="qmRx9gTHNLVJBmuzQ1XxBvG2EXA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbRU0mkqMeiF48VTFtoQ9lsN+3S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRW8epItQnMY9VN8Saciapb5jhtJsoikXIaSec3OV+54kqzWL5aKYJDQQeSRYxgk0uhecDb1CtuXV3DrRKvILUoEBrUP3qD2OSCioN4VjrnucmJsiwMoxwOqv0U00TTCZ4RHuWSiyoDrL5rTN0ZpUhimJlSxo0V39PZFhoPRWh7RTYjPWyl4v/eb3URDdBxmSSGirJYlGUcmRilD+OhkxRYvjUEkwUs7ciMsYKE2PjqdgQvOWXV0n7su5d1RsPjVrztoijDCdwChfgwTU04R5a4AOBMTzDK7w5wnlx3p2PRWvJKWaO4Q+czx9Nzo3E</latexit>

b01
<latexit sha1_base64="7kD1ZGSKl4DqbdHNn6ODSnoedSE=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbRU9ktpXosevFYwX5Au5Rsmm1Dk+ySZIWy9C948aCIV/+QN/+N2XYP2vpg4PHeDDPzgpgzbVz32ylsbG5t7xR3S3v7B4dH5eOTjo4SRWibRDxSvQBrypmkbcMMp71YUSwCTrvB9C7zu09UaRbJRzOLqS/wWLKQEWwyKbgc1oblilt1F0DrxMtJBXK0huWvwSgiiaDSEI617ntubPwUK8MIp/PSINE0xmSKx7RvqcSCaj9d3DpHF1YZoTBStqRBC/X3RIqF1jMR2E6BzUSvepn4n9dPTHjjp0zGiaGSLBeFCUcmQtnjaMQUJYbPLMFEMXsrIhOsMDE2npINwVt9eZ10alWvUa0/1CvN2zyOIpzBOVyBB9fQhHtoQRsITOAZXuHNEc6L8+58LFsLTj5zCn/gfP4AT1KNxQ==</latexit>

b02
<latexit sha1_base64="hYZdXqyhmFio8myU8FCo0G3pG1s=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbRU0mkqMeiF48VTFtoQ9lsN+3S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRW8epItQnMY9VN8Saciapb5jhtJsoikXIaSec3OV+54kqzWL5aKYJDQQeSRYxgk0uheeDyaBac+vuHGiVeAWpQYHWoPrVH8YkFVQawrHWPc9NTJBhZRjhdFbpp5ommEzwiPYslVhQHWTzW2fozCpDFMXKljRorv6eyLDQeipC2ymwGetlLxf/83qpiW6CjMkkNVSSxaIo5cjEKH8cDZmixPCpJZgoZm9FZIwVJsbGU7EheMsvr5L2Zd27qjceGrXmbRFHGU7gFC7Ag2towj20wAcCY3iGV3hzhPPivDsfi9aSU8wcwx84nz+lto3+</latexit>

b0k
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Figure 5: The weighted rectangle, where b′0 is placed at coordinates (0, 0), bk at (2k, 1), and all the

other vertices are evenly spaced in the plane. Filled-in vertices correspond to sources, and the other

vertices to sinks. The red, green (semi-dashed), orange, and blue arcs have weight d τ−12 e, b τ−12 c, d τ2e,

and 1, respectively. The green arcs have weight 0 iff τ = 2.

Moving forward, for each i ∈ {1, 2, . . . , |s|}, let

f(i) := |{j : sj = (−, 0) or (−, 1), j < i}|
+ (τ − 1) · |{j : sj = (+, 1), j < i}|
+ τ · |{j : sj = (+, 0), j < i}|.

Step 2: Adding rungs. For each i ∈ I(−, 0), add an arc a′f(i)bf(i) of weight 1; note that 0 ≤ f(i) ≤

k′ − 1.
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Step 3: Adding sources. In this step, we add sources to the rectangle whose neighbors belong to the

top long side of the rectangle.

For each i ∈ I(+, j), j = 0, 1, introduce a new source si to the weighted rectangle, incident only

with weight-1 arcs, whose neighbors are the sinks {bf(i)+r : r = 0, 1, . . . , τ − 1 − j}. Observe that

the neighbors of si, i ∈ I(+, 0) ∪ I(+, 1) form disjoint subintervals of (b0, b1, . . . , bk′−1). Note that

each si, i ∈ I(+, j) has weighted degree τ − j.

Then add new sources s′1, . . . , s
′
k−k′+`−

τ

, incident only with weight-1 arcs, whose neighbors form

a partition of the sequence of sinks (bk′ , . . . , bk−1) into subintervals of sizes n1, . . . , n k−k′+`−
τ

, respec-

tively. (See i and ii.) Now, for each s′i, double τ − ni distinct arcs incident with s′i (or, increase their

weight by 1). Then each s′i has weighted degree τ . Observe that the total number of arcs doubled is `−.

Step 4: Adding sinks. In this step, we add sinks to the rectangle whose neighbors belong to the

bottom long side of the rectangle.

Introduce new sinks t1, . . . , t k−s(−,0)+`+
τ

, incident only with weight-1 arcs, whose neighbors form

a partition of the sequence of sources (a′i : 0 ≤ i ≤ k − 1, i /∈ I(−, 0)) into subintervals of sizes

m1, . . . ,m k−s(−,0)+`+
τ

, respectively. (See i and iii.) Now, for each tj , double τ − mj distinct arcs

incident with it (or, increase their weight by 1). Then each tj has weighted degree τ . Observe that the

total number of arcs doubled is `+.

The weighted digraph and its plane embedding. After performing Steps 1-4, we obtain a weighted

digraph (D,w). We claim this is the desired weighted digraph. By construction, D is a weighted

bipartite digraph, and if τ ≥ 3 then every arc has nonzero weight. D is planar with the following

appropriate straight line plane embedding: Given the embedding of the rectangle in Figure 5, place

• the vertices si, i ∈ I(+, 0) ∪ I(+, 1) at coordinates (1 + 2f(i), 2),

• the vertex s′1 at (1 + 2k′, 2), and s′j , j ∈
[
k−k′+`−

τ

]
− {1} at (1 + 2k′ + 2

∑j−1
i=1 ni, 2),

• t1 at (1,−1), and tj , j ∈
[
k−s(−,0)+`+

τ

]
− {1} at (1 + 2

∑j−1
i=1 mi,−1).

For each si, define φ(si) as follows: if i ∈ I(+, 0)∪I(+, 1) let φ(si) = si, and if i ∈ I(−, 0)∪I(−, 1)

let φ(si) = bf(i). It can be readily checked that φ satisfies (6) for the embedding above.
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Weighted degrees:

• t1, . . . , t k+`+
τ

have weighted degree τ .

• si, i ∈ I(+, j) has weighted degree τ − j, and s′i, i ∈
[
k−k′+`−

τ

]
has weighted degree τ .

• a0, bk, b′0, a
′
k have weighted degree d τ−12 e+ d τ2e = τ .

• a1, a2, . . . , ak, b′1, b
′
2, . . . , b

′
k have weighted degree d τ−12 e+ b τ−12 c+ 1 = τ .

• b0, b1, . . . , bk′−1 have weighted degree d τ−12 e + b τ−12 c = τ − 1 or d τ−12 e + b τ−12 c + 1 = τ .

More specifically, bj , j = 0, 1, . . . , k′− 1 has weighted degree τ − 1 if, and only if, bj ∈ {bf(i) :

i ∈ I(−, 1)}.

• bk′ , bk′+1, . . . , bk−1 have weighted degree d τ−12 e+b τ−12 c+1 = τ or d τ−12 e+b τ−12 c+2 = τ+1.

More specifically, bj , j = k′, k′ + 1, . . . , k − 1 has weighted degree τ + 1 if, and only if,

bj is incident to double arcs in Step 3. Since the number of such arcs is `−, we get that of

bk′ , bk′+1, . . . , bk−1, exactly `− have weighted degree τ + 1, and the rest have weighted degree

τ .

• a′0, a
′
1, . . . , a

′
k−1 have weighted degree d τ−12 e+ b τ−12 c+ 1 = τ or d τ−12 e+ b τ−12 c+ 2 = τ + 1.

More specifically, a′j , j = 0, 1, . . . , k−1 has weighted degree τ +1 if, and only if, a′j is incident

to double arcs in Step 4. Since the number of such arcs is `+, we get that of a′0, a
′
1, . . . , a

′
k−1,

exactly `+ have weighted degree τ + 1, and the rest have weighted degree τ .

In summary, every vertex has weighted degree τ − 1, τ, τ + 1, with

• exactly `+ + `− vertices of weighted degree τ + 1, of which `+ are sources and so `− are sinks,

and no two of which are adjacent (because bi, i < k and a′j , j < k are not adjacent),

• exactly s(+, 1) + s(−, 1) vertices of weighted degree τ − 1.

Lower bound on dicut weights. We already showed in Step 1 that every dicut of the weighted

rectangle has weight at least τ − 1. The lower bound is maintained after adding the rungs in Step 2.
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When adding the sources and sinks in Steps 3-4, we ensured each new vertex has weighted degree at

least τ − 1 and only neighbors on the weighted rectangle, preserving the lower bound on the weight of

every dicut.

Remark 2.9. When τ = 3, we can turn the gadget of Lemma 2.8 to a simple (unweighted) digraph. To

this end, observe that the gadget has no opposite arcs. Since τ = 3, every arc has weight 1 or 2. For

every arc a = (u, v) of weight 2, replace it with the following unweighted digraph. It can be readily
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checked that the revised gadget, with the all-ones weights, satisfies (1)-(6).

The remark above does not extend to τ ≥ 4, in that there is no simple planar bipartite graph

with only vertices of degree τ except for exactly two vertices of degree τ − 1; this follows as a fairly

immediate consequence of Euler’s formula.

2.3 Lifting

Theorem 2.10 (Lifting). Let (D = (V,A), w) be an irreducible weighted digraph, where every dicut

has weight at least τ , and τ ≥ 2. For each v ∈ V , choose integers `+(v), `−(v) ≥ 0 such that

`+(v) − `−(v) ≡ w(δ+(v)) − w(δ−(v)) (mod τ). Then there exists a weighted (τ, τ + 1)-bipartite

digraph (D′ = (V ′, A′), w′) such that

1. A ⊆ A′, every arc in A has the same weight in both (D,w) and (D′, w′), every arc in A′ − A

has nonzero weight in (D′, w′) if τ ≥ 3, and D = D′/(A′ −A),

2. the number of sources of (D′, w′) of weighted degree τ + 1 is
∑

v∈V `
+(v), and the number of

sinks of (D′, w′) of weighted degree τ + 1 is
∑

v∈V `
−(v),

3. C(D,w) is a contraction minor of C(D′, w′), and

4. if D is planar, then so is D′.
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Proof. By replacing every arc a of weight wa ≥ 1 with wa arcs of weight 1 with the same head and

tail, if necessary, we may assume that w ∈ {0, 1}A. For each v ∈ V , let sv be a sequence with

a distinct (−, j), j = 0, 1 entry for every weight-j arc entering v, and a distinct (+, j), j = 0, 1

entry for every weight-j arc leaving v, and no other entries. For now, the ordering of the entries in

sv is not relevant; this will be relevant for Claim 3 below. Let Dv := D(τ, sv, `+(v), `−(v)) and

wv := w(τ, sv, `+(v), `−(v)) as given by Lemma 2.8. Let (D′ = (V ′, A′), w′) be obtained from

(D,w) by replacing each v with the gadget (Dv, wv), where the arc inD incident with v corresponding

to si is now incident with φ(si) in the gadget; moreover, every new arc introduced has the same weight

as in (Dv, wv), while all the old arcs have the same weight as in (D,w).

Claim 1. Every dicut of (D′, w′) has weight at least τ .

Proof of Claim. Let δ+D′(U) be a dicut of (D′, w′). If U does not separate any V (Dv), v ∈ V , then

δ+D′(U) ⊆ A is in fact a dicut of (D,w), so it has weight at least τ . Otherwise, δ+D′(U) separates some

V (Du), u ∈ V . Since δ+D′(U) yields a dicut of (Du, wu), and every dicut of (Du, wu) has weight at

least τ − 1, it follows that δ+D′(U) ∩ A(Du) has weight at least τ − 1. Since (D,w) has no pseudo-

cut-vertex, u is not a pseudo-cut-vertex of (D,w), so the arcs of δ+D′(U) of nonzero weight cannot all

be contained in A(Du), implying in turn that δ+D′(U) has weight at least τ − 1 + 1 = τ . Thus, in both

cases, δ+D′(U) has weight at least τ , as required. ♦

Claim 2. (D′, w′) is a weighted (τ, τ + 1)-bipartite digraph satisfying (1) and (2).

Proof of Claim. It can be readily checked that (D′, w′) is a weighted bipartite digraph where every

vertex has weighted degree τ or τ + 1, and no two vertices of weighted degree τ + 1 are adjacent

(to see the latter, note that every two vertices of weighted degree τ + 1 from different gadgets are

clearly not adjacent, and every two vertices of weighted degree τ + 1 from the same gadget are not

adjacent by construction). By Claim 1, every dicut has weight at least τ . Thus, (D′, w′) is a weighted

(τ, τ + 1)-bipartite digraph. (1)-(2) are satisfied by construction. ♦

Claim 3. Every dicut of (D,w) is also a dicut of (D′, w′). Conversely, every dicut of (D′, w′) is either

a dicut of (D,w), or it contains a weight-1 arc of (D′, w′) outside of (D,w). That is, b(C(D,w)) is a
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deletion minor of b(C(D′, w′)), and so (3) holds.

Proof of Claim. Clearly every dicut of (D,w) is also a dicut of (D′, w′). Conversely, let δ+D′(U) be a

dicut of (D′, w′). If U does not separate any V (Dv), v ∈ V , then δ+D′(U) ⊆ A is a dicut of (D,w).

Otherwise, δ+D′(U) separates some V (Du), u ∈ V . Since δ+D′(U) yields a dicut of (Du, wu), and

every dicut of (Du, wu) has weight at least τ − 1, it follows that δ+D′(U) ∩ A(Du) has weight at least

τ − 1 ≥ 1, so δ+D′(U) contains a weight-1 arc of (Du, wu), which is a weight-1 arc of (D′, w′) outside

of (D,w), as required. ♦

Claim 4. If D is planar, then one can ensure that D′ is also planar. That is, (4) holds.

Proof of Claim. Suppose D is planar, and fix a plane drawing of it. Recall that D′ is obtained from D

by replacing each v by a plane gadgetDv, and rewiring the arcs attached to v to distinct vertices ofDv.

Thus, to ensure that D′ remains planar, it suffices to ensure that when rewiring the arcs attached to v

to the vertices of Dv, the arcs are attached to vertices on the boundary of the gadget, and the clockwise

ordering of the arcs given in the plane drawing of D has been respected in the rewiring stage. This can

be guaranteed by ensuring the ordering of sv follows a clockwise ordering of the arcs incident with v

in the plane drawing of D. ♦

Claims 2-4 finish the proof.

Theorem 2.11 (Unweighted Lifting). Let D = (V,A) be a digraph that is 2-connected as an undi-

rected graph, where every dicut has size at least τ , and τ ≥ 3. For each v ∈ V , choose integers

`+(v), `−(v) ≥ 0 such that `+(v) − `−(v) ≡ deg+(v) − deg−(v) (mod τ). Then there exists a

(τ, τ + 1)-bipartite digraph D′ = (V ′, A′) such that

1. A ⊆ A′ and D = D′/(A′ −A),

2. the number of sources of D′ of degree τ + 1 is
∑

v∈V `
+(v), and the number of sinks of D′ of

degree τ + 1 is
∑

v∈V `
−(v),

3. C(D) is a contraction minor of C(D′), and
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4. if D is planar, then so is D′.

Proof. We apply Theorem 2.10 to (D,1) and τ ≥ 3 to obtain a weighted (τ, τ + 1)-bipartite digraph

(D′ = (V ′, A′), w′) where every arc of A′ has nonzero weight. After replacing every arc a of weight

w′a by w′a arcs of weight 1 with the same head and tail, we obtain the desired (τ, τ + 1)-bipartite

digraph.

2.4 Decompose-and-Lift Operation

Theorem 2.12 (Decompose-and-Lift). Let (D,w) be a weighted digraph, where every dicut has weight

at least τ , and τ ≥ 2. Then there exist weighted (τ, τ + 1)-bipartite digraphs (D′i, w
′
i), i ∈ I for a

finite index set I , such that the following statements hold:

1. if w > 0 and τ ≥ 3, then w′i > 0 for each i ∈ I ,

2. if D is planar, then so is each D′i, i ∈ I ,

3. C(D,w) =
∏
i∈I Ci where Ci is a contraction minor of C(D′i, w′i), for each i ∈ I .

Moreover, we can choose each (D′i, w
′
i), i ∈ I to satisfy any one of the following statements:

i. (D′i, w
′
i) is balanced,

ii. (D′i, w
′
i) is sink-regular and ρ(τ,D′i, w

′
i) ≤ ρ(τ,D,w)

Proof. We proceed in two stages.

Stage 1: Decompose (D,w) into irreducible weighted digraphs. Since (D,w) has no dicut of weight

0, we may apply Theorem 2.6 to get irreducible weighted digraphs (Di, wi), i ∈ I satisfying Theo-

rem 2.6 (1)-(4). By (1), wi = w|A(Di) for each i ∈ I . By (2), if D is planar, then so is each Di, i ∈ I .

By (3), ρ(τ,Di, wi) ≤ ρ(τ,D,w) for each i ∈ I . By (4), C(D,w) =
∏
i∈I C(Di, wi).

Stage 2: Lift each (Di, wi), i ∈ I . Since (Di, wi) is irreducible, and every dicut has weight at least

τ , we may apply Theorem 2.10. For each vertex v ∈ V (Di), choose `+i (v), `−i (v) ≥ 0 such that
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`+i (v)− `−i (v) ≡ wi(δ+Di(v))−wi(δ−Di(v)) (mod τ). Then by Theorem 2.10, there exists a weighted

(τ, τ + 1)-bipartite digraph (D′i, w
′
i) satisfying Theorem 2.10 (1)-(4). By (1), if wi > 0 and τ ≥ 3,

then w′i > 0. By (2), the number of sources of (D′i, w
′
i) of weighted degree τ + 1 is

∑
v∈V (Di)

`+i (v),

and the number of sinks of (D′i, w
′
i) of weighted degree τ + 1 is

∑
v∈V (Di)

`−i (v). By (3), C(Di, wi)

is a contraction minor of C(D′i, w′i). By (4), if Di is planar, then so is D′i. It remains to fix the choices

of `+i (v), `−i (v), v ∈ V (Di), which we do according to one of the following two criteria:

i. For each v ∈ V (Di), let `+i (v) := wi(δ
+
Di

(v)) and `−i (v) := wi(δ
−
Di

(v)). Then
∑

v∈V (Di)
`+i (v) =∑

v∈V (Di)
`−i (v), so (D′i, w

′
i) is balanced.

ii. For each v ∈ V (Di), define `+i (v) := wi(δ
+
Di

(v)) − wi(δ
−
Di

(v)) mod τ and `−i (v) := 0.

Then (D′i, w
′
i) is sink-regular with exactly τρ(τ,Di, wi) sources of degree τ + 1. In particu-

lar, ρ(τ,D′i, w
′
i) = 1

τ (τρ(τ,Di, wi)) = ρ(τ,Di, wi). Since we have ρ(τ,Di, wi) ≤ ρ(τ,D,w)

from Stage 1, we get that ρ(τ,D′i, w
′
i) ≤ ρ(τ,D,w).

Summary We claim (D′i, w
′
i), i ∈ I are the desired weighted digraphs. (1) Suppose w > 0 and

τ ≥ 3. Stage 1 guarantees wi > 0, i ∈ I , and so Stage 2 guarantees w′i > 0, i ∈ I . (2) If D is planar,

then each Di, i ∈ I is planar, so each D′i, i ∈ I is planar. (3) holds for Ci := C(Di, wi), i ∈ I . (i)-(ii)

Moreover, we can choose each (D′i, w
′
i), i ∈ I to satisfy either (i) or (ii).

Theorem 2.13 (Unweighted Decompose-and-Lift). Let D be a digraph where every dicut has size at

least τ , and τ ≥ 3. Then there exist (τ, τ + 1)-bipartite digraphs D′i, i ∈ I for a finite index set I , such

that the following statements hold:

1. if D is planar, then so is each D′i, i ∈ I ,

2. C(D) =
∏
i∈I Ci where Ci is a contraction minor of C(D′i), for each i ∈ I .

Moreover, we can choose each D′i, i ∈ I to satisfy any one of the following statements:

i. D′i is balanced,

ii. D′i is sink-regular and ρ(τ,D′i) ≤ ρ(τ,D).
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Proof. We apply Theorem 2.12 to (D,1) and τ ≥ 3 to obtain weighted (τ, τ + 1)-bipartite digraphs

(D′i, w
′
i), i ∈ I for a finite index set I , where every arc of (D′i, w

′
i) has nonzero weight by Theo-

rem 2.12 (1). For each i ∈ I , replace every arc a of (D′i, w
′
i) of weight w′i,a by w′i,a arcs of weight 1

with the same head and tail, we obtain the desired (τ, τ + 1)-bipartite digraph.

2.5 Reducing

Having described Decompose-and-Lift, we are now ready to explain how the problem of packing di-

joins, or more generally k-dijoins, of size τ in arbitrary weighted digraphs can be reduced to the same

problem in weighted (τ, τ + 1)-bipartite digraphs. We need the following two remarks.

Remark 2.14. If C has an (equitable) packing of size τ , then so does every contraction minor of C.

Remark 2.15. If Ci, i ∈ [k] have (equitable) packings of size τ , then so does
∏
i∈[k] Ci.

Theorem 2.16 (Reducing). Take an integer τ ≥ 2. The following statements hold:

1. Given any statement [wt, τ ; ?, ?] that includes wt, τ , excludes ρ, and may include pl, eqt, the

statement is true if, and only if, it is true for all weighted (τ, τ + 1)-bipartite digraphs that are

balanced.

2. Given any statement [wt, τ, ρ; ?, ?] that includes wt, τ, ρ, and may include pl, eqt, the statement

is true if, and only if, it is true for all weighted (τ, τ +1)-bipartite digraphs that are sink-regular.

Proof. (⇒) holds clearly for both (1) and (2). (⇐) is a straightforward consequence of Remark 2.14,

Remark 2.15, and Theorem 2.12, where for (1) we pick each (D′i, w
′
i), i ∈ I to satisfy (i), and for (2)

we pick each to satisfy (ii).

Theorem 2.17 (Unweighted Reducing). Take an integer τ ≥ 3. The following statements hold:

1. Given any statement [τ ; ?, ?] that includes τ , excludes wt, ρ, and may include pl, eqt, the state-

ment is true if, and only if, it is true for all (τ, τ + 1)-bipartite digraphs that are balanced.

2. Given any statement [τ, ρ; ?, ?] that involves τ, ρ, excludes wt, and may include pl, eqt, the state-

ment is true if, and only if, it is true for all (τ, τ + 1)-bipartite digraphs that are sink-regular.
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3. Let k ∈ [τ − 1]. Consider the following statement:

Let D = (V,A) be a digraph where every dicut has size at least τ . Then A can be

partitioned into a k-dijoin and a (τ − k)-dijoin.

If this statement is true for every sink-regular (τ, τ+1)-bipartite digraph, then it is true for every

digraph.

Proof. (⇒) holds clearly for both (1) and (2). (⇐) is a straightforward consequence of Remark 2.14,

Remark 2.15, and Theorem 2.13 (which requires τ ≥ 3), where for (1) we pick each D′i, i ∈ I to

satisfy (i), and for (2) we pick each to satisfy (ii).

(3) Let us prove the statement for an arbitrary instance D = (V,A). By Theorem 2.13, there exist

sink-regular (τ, τ + 1)-bipartite digraphs D′i, i ∈ I for a finite index set I , such that C(D) =
∏
i∈I Ci,

where Ci is a contraction minor of C(D′i) for each i ∈ I . In other words, b(C(D)) = ⊕i∈Ib(Ci), where

b(Ci) is a deletion minor of b(C(D′i)) for each i ∈ I . By our hypothesis, A(D′i) can be partitioned into

a k-dijoin J1
i and a (τ − k)-dijoin J2

i of D′i, for each i ∈ I . Let J1 :=
⋃
i∈I J

1
i and J2 :=

⋃
i∈I J

2
i .

Clearly, J1 and J2 are disjoint. We claim that J1 is a k-dijoin and J2 is a (τ − k)-dijoin of D, thereby

finishing the proof. To this end, let δ+D(U) be a minimal dicut of D, that is, δ+D(U) ∈ b(C(D)). Then

δ+D(U) ∈ b(Ci), so δ+D(U) is also a minimal dicut of some D′j , j ∈ I , implying in turn that

|δ+D(U) ∩ J1| = |δ+
D′j

(U) ∩ J1
j | ≥ k

|δ+D(U) ∩ J2| = |δ+
D′j

(U) ∩ J2
j | ≥ τ − k.

Since these inequalities hold for every minimal dicut of D, we get that J1 is a k-dijoin and J2 is a

(τ − k)-dijoin of D, as required.

We will not use Theorem 2.16 (1) and Theorem 2.17 (1) in the rest of this paper.

3 [wt, τ, 1; eqt] is true.

In this section we prove the primary result P2. Throughout the section, unless stated otherwise, we are

given an integer τ ≥ 2, a weighted (τ, τ + 1)-bipartite digraph (D = (V,A), w) that is sink-regular,

and w ∈ {0, 1}A. Let A1 := {a ∈ A : wa = 1}.
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3.1 Rounded 1-factors

Definition 3.1. A vertex v of (D,w) is active if w(δ(v)) = τ+1, and is inactive if w(δ(v)) = τ . Given

U ⊆ V , denote by a(U) the set of active vertices of (D,w) in U .

Remark 3.2. Suppose there are τ disjoint dijoins J1, . . . , Jτ contained in A1. Then the following

statements hold:

1. for each inactive vertex v, |Ji ∩ δ(v)| = 1 for each i ∈ [τ ],

2. J1, . . . , Jτ partition A1, and

3. for each active vertex v, |Ji ∩ δ(v)| ∈ {1, 2} for each i ∈ [τ ], and |Jj ∩ δ(v)| = 2 for exactly

one j.

Proof. (1) For every inactive vertex v, δ(v) is a dicut of weight τ , so (1) follows. (2) follows from (1)

combined with the fact that every arc is incident to an inactive vertex, because the active vertices form

a stable set of D. (3) follows from (2) and the fact that δ(v) is a dicut of weight τ + 1.

Definition 3.3. Let J ⊆ A. We say that J is a rounded 1-factor of (D,w) if for each vertex v, |J∩δ(v)|

is w(δ(v))
τ rounded up or down. For a rounded 1-factor J , a dyad center is the center of a dyad of J ,

i.e. it is a vertex incident with two arcs from J; denote by dc(J) the set of dyad centers of J .

Observe that a rounded 1-factor is the vertex disjoint union of arcs and dyads saturating every

vertex of D. Observe further that a dyad center is necessarily active. Using the following general

result for bipartite graphs, we get a partition of A1 into τ rounded 1-factors.

Theorem 3.4 (de Werra [14], see [32], Corollary 1.4.21). Let G = (V,E) be a bipartite graph, and

k ≥ 1 an integer. ThenE can be partitioned into k sets J1, . . . , Jk such that |Ji∩δ(v)| is |δ(v)|k rounded

up or down, for each i ∈ [k] and v ∈ V .

Subsequently,

Lemma 3.5. A1 can be partitioned into τ rounded 1-factors.

Proof. This is an immediate consequence of Theorem 3.4 applied to G = D[A1] and k = τ .
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3.2 Discrepancy

Definition 3.6. For each sink u of (D,w), denote disc(u) := 1, and for each source u, denote

disc(u) := −1. For every U ⊆ V , the discrepancy of U in (D,w), denoted disc(U), is the num-

ber of sinks in U minus the number of sources in U , that is, disc(U) =
∑

u∈U disc(u).

Observe that disc : 2V → Z is a modular function, that is, disc(U ∩ W ) + disc(U ∪ W ) =

disc(U) + disc(W ) for all U,W ⊆ V .

Lemma 3.7. The following statements hold:

1. |a(V )| = τ · disc(V ), and ρ(τ,D,w) = disc(V ),

2. for every dicut δ+(U) of D, w(δ+(U)) = |a(U)| − τ · disc(U),

3. for every dicut δ+(U) of D, disc(U) ≤ disc(V )− 1, and if equality holds, then w(δ+(U)) = τ

and a(U) = a(V ).

Proof. (1) Let us double-count w(A). On one hand, w(A) =
∑

v a sink w(δ−(v)) = τ · |{v : v a sink}|,

where the last equality holds because (D,w) is sink-regular. On the other hand,

w(A) =
∑

v a source

w(δ+(v)) = τ · |{v : v a source}|+ |a(V )|.

Thus, |a(V )| = τ(|{v : v a sink}| − |{v : v a source}|) = τ · disc(V ). Moreover,

ρ(τ,D,w) =
1

τ

∑
v∈V

(w(δ+(u))− w(δ−(v)) mod τ) =
1

τ
|a(V )| = disc(V ),

where the second to last equality holds because (D,w) is sink-regular. Thus, (1) holds. (2) We have

w(δ+(U)) = w(δ+(U))− w(δ−(U))

=
∑
v∈U

(w(δ+(u))− w(δ−(v)))− 0

= |a(U)|+ τ(|{v : v a source in U}| − |{v : v a sink in U}|)
= |a(U)| − τ · disc(U).

(3) Since (D,w) is a weighted (τ, τ+1)-bipartite digraph, w(δ+(U)) ≥ τ , so |a(U)|−τ ·disc(U) ≥ τ

by (2), implying in turn that |a(U)| ≥ τ(1 + disc(U)). Moreover, |a(V )| ≥ |a(U)|, and |a(V )| =
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τ ·disc(V ) by (1). Combining these we get disc(V ) ≥ 1 + disc(U). If equality holds here, then it must

hold throughout, so w(δ+(U)) = τ and a(V ) = a(U), as claimed.

Lemma 3.8. Let J ⊆ A be a rounded 1-factor. Then the following statements hold:

1. | dc(J)| = disc(V ),

2. |J ∩ δ+(U)| = | dc(J) ∩ U | − disc(U) for every dicut δ+(U) of D,

3. J is a dijoin of D if, and only if, | dc(J) ∩ U | ≥ 1 + disc(U) for every dicut δ+(U) of D,

4. Let J1, . . . , Jτ be a partition of A1 into rounded 1-factors. Pick i, j ∈ [τ ]. Then for every dicut

δ+(U) of D,

|Ji ∩ δ+(U)| − |Jj ∩ δ+(U)| = | dc(Ji) ∩ U | − | dc(Jj) ∩ U |,

and so

− disc(V ) ≤ |Ji ∩ δ+(U)| − |Jj ∩ δ+(U)| ≤ disc(V ).

Proof. (1) Since (D,w) is sink-regular, every active vertex is a source, so every dyad center is a source.

We know that J is the vertex-disjoint union of arcs and dyads saturating every vertex. A simple double-

counting tells us that the number of dyads of J is disc(V ), so | dc(J)| = disc(V ). (2) We have

|J ∩ δ+(U)| = |J ∩ δ+(U)| − |J ∩ δ−(U)|
=
∑
v∈U

(|J ∩ δ+(v)| − |J ∩ δ−(v)|)− 0

= | dc(J) ∩ U |+ |{v : v a source in U}| − |{v : v a sink in U}|
= | dc(J) ∩ U | − disc(U)

where the third equality uses the fact that every vertex in U has exactly one arc in J incident to it,

except for the dyad centers of J , which are active and therefore sources, and have exactly two arcs in

J . (3) and (4) are immediate consequences of (2).

Remark 3.9. Observe that the equality in Lemma 3.7 (2) holds more generally for every dicut of

D[A1]. Also, the (in)equalities of Lemma 3.8 (2) and (4) hold more generally for every dicut of D[A1]

if J ⊆ A1, which will be the case in most applications.
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Note the significance of Lemma 3.8 (2) and (3): a rounded 1-factor being a dijoin is solely a

function of its dyad centers, and not of the arcs.

3.3 Alternating circuits, cycles and paths

Definition 3.10. Let J1, J2 be rounded 1-factors. A {J1, J2}-alternating circuit is a circuitC contained

in J14J2 whose arcs alternatively belong to J1, J2. A {J1, J2}-alternating cycle is a (possibly empty)

arc-disjoint union of {J1, J2}-alternating circuits, that is, it is a subset C ⊆ J14J2 such that |δ(v) ∩

C ∩ J1| = |δ(v) ∩ C ∩ J2| for every vertex v.

Note that ∅ is a {J1, J2}-alternating cycle, but not a {J1, J2}-alternating circuit.

Definition 3.11. Let J1, J2 be rounded 1-factors, and let Q1 := dc(J1) and Q2 := dc(J2). A (J1, J2)-

alternating path is a (u, v)-path contained in J14J2, for some u ∈ Q1 −Q2 and v ∈ Q2 −Q1, whose

arcs alternatively belong to J1, J2 with the first arc belonging to J1.

Lemma 3.12. Let J1, J2 be rounded 1-factors, Q1 := dc(J1) and Q2 := dc(J2), and let 2k :=

Q14Q2 for some integer k ≥ 0. Then there exists a bijection π : Q1 −Q2 → Q2 −Q1 such that the

following statements hold:

1. J14J2 can be decomposed into a {J1, J2}-alternating cycle, and k (J1, J2)-alternating paths

P1, . . . , Pk whose ends are {u1, π(u1)}, . . . , {uk, π(uk)}, respectively.

2. For any X ⊆ [k], J14
(
4i∈[k]Pi

)
and J24

(
4i∈[k]Pi

)
are rounded 1-factors with dyad centers

Q14
(
4i∈[k]{ui, π(ui)}

)
and Q24

(
4i∈[k]{ui, π(ui)}

)
, respectively.

Proof. (1) Let D′ be the digraph obtained from D[J14J2] after reversing the arcs in J2−J1. For each

v ∈ V , let def(v) := |δ+D′(v)| − |δ−D′(v)|. Observe that def(v) = 0 for every vertex v /∈ Q14Q2,

def(v) = 1 for every vertex v ∈ Q1 − Q2, and def(v) = −1 for every vertex v ∈ Q2 − Q1. It can

now be readily checked that A(D′) can be decomposed into arc subsets P , where P is a directed path

or circuit of D′; if P is a path, then it starts at a vertex v with def(v) = 1 and ends at a vertex with

def(v) = −1. (This is a routine topological argument, and follows, for example, from [38], Theorem

11.1.) The paths in the decomposition provide the desired π, and the decomposition itself gives us (1).

(2) is immediate.
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3.4 [wt, τ, 1; eqt] is true.

Theorem 3.13. Let (D = (V,A), w) be a sink-regular weighted (τ, τ + 1)-bipartite digraph such that

ρ(τ,D,w) ≤ 1. Then there exists an equitable w-weighted packing of dijoins of size τ .

Proof. After replacing every arc a of nonzero weight with wa arcs of weight 1 with the same head and

tail, if necessary, we may assume that w ∈ {0, 1}A. Let A1 := {a ∈ A : wa = 1}. By Lemma 3.5,

A1 can be partitioned into τ rounded 1-factors J1, . . . , Jτ . We claim that each Ji is a dijoin of D. By

Lemma 3.7 (1), ρ(τ,D,w) = disc(V ), so disc(V ) ∈ {0, 1}. Let δ+(U) be a dicut of D. It suffices to

prove that Ji ∩ δ+(U) 6= ∅ for each i ∈ [τ ]. By Lemma 3.8 (4), for all i, j ∈ [τ ],

− 1 ≤ |Ji ∩ δ+(U)| − |Jj ∩ δ+(U)| ≤ 1. (?)

Since the dicut δ+(U) has weight at least τ , and (Ji∩δ+(U) : i ∈ [τ ]) partition the arcs inA1∩δ+(U),

(?) implies that |Ji ∩ δ+(U)| > 0 for each i ∈ [τ ]. Thus, each Ji, i ∈ [τ ] is a dijoin of D. In fact, (?)

implies that J1, . . . , Jτ is an equitable packing of dijoins, as required.

Theorem 3.14. Let (D = (V,A), w) be a weighted digraph where every dicut has weight at least τ ,

and τ ≥ 2. Suppose ρ(τ,D,w) ≤ 1. Then there exists an equitable w-weighted packing of dijoins of

size τ . That is, [wt, τ, 1; eqt] is true.

Proof. By Theorem 3.13, [wt, τ, 1; eqt] holds for all sink-regular weighted (τ, τ+1)-bipartite digraphs.

In particular, by Theorem 2.16 (2), [wt, τ, 1; eqt] is true.

Corollary 3.15. Let (D = (V,A), w) be a weighted digraph, and let g := gcd{w(δ+(v))−w(δ−(v)) :

v ∈ V }. Then there exists an equitable w-weighted packing of dijoins of size g.

Proof. Observe that g = gcd{w(δ+(U)) − w(δ−(U)) : ∅ 6= U ( V }. In particular, every dicut has

weight at least g. If g = 1, then we are done. Otherwise, g ≥ 2. Then ρ(g,D,w) = 0, so the result

follows from [wt, g, 0; eqt], which holds by Theorem 3.14.
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4 Packing a dijoin and a (τ − 1)-dijoin in digraphs

In this section we prove the primary result P1. To this end, we need to recall some notions from

Combinatorial Optimization [38, 20].

4.1 Crossing families, box-TDI systems, and the integer decomposition property

Let U be a family of subsets of a finite ground set V . A pair of setsU,W ∈ U are crossing ifU∩W 6= ∅

and U ∪W 6= V . U is a crossing family if U ∩W,U ∪W ∈ U for all crossing pairs U,W .

Remark 4.1. Let D = (V,A) be a digraph. Then {U ⊆ V : δ+(U) is a dicut of D} is a crossing

family.

Given a crossing family U , a function g : U → Z is crossing submodular if g(U) + g(W ) ≥

g(U ∩W ) + g(U ∪W ) for all crossing pairs U,W ∈ U .

Theorem 4.2 (Frank and Tardos [21], see [38], Theorem 49.7a). Let U be a crossing family over

ground set V , g : U → Z a crossing submodular function, and k ≥ 1 an integer. Then {B ⊆ V :

|B| = k; |B ∩ U | ≤ g(U) ∀U ∈ U}, if nonempty, is the set of bases of a matroid.

Given A ∈ Qm×n and b ∈ Qn, the linear system Ax ≤ b is totally dual integral (TDI) if the linear

program min{y>b : A>y = w, y ≥ 0}, if feasible and bounded, has an integral optimal solution for

each w ∈ Zn [17]. Observe that the linear program is the dual of max{w>x : Ax ≤ b}. The system

Ax ≤ b is box-TDI if the system Ax ≤ b, d ≤ x ≤ c is TDI for all d, c ∈ Rn.

Theorem 4.3 (Fujishige [22], see [38], Theorem 49.8). Let Ci, i ∈ [2] be a crossing family over

ground set V , gi : C → Z, i ∈ [2] a crossing submodular function, and k an integer. Then the system

x(V ) = k; x(U) ≤ g1(U) ∀U ∈ C1; x(U) ≤ g2(U) ∀U ∈ C2 is box-TDI.

An important result is that if Ax ≤ b is TDI then the primal linear program max{w>x : Ax ≤ b},

if feasible and bounded, has an integral optimal solution for each w ∈ Zn, that is, {x : Ax ≤ b} is an

integral polyhedron [26, 17]. In particular, if Ax ≤ b is box-TDI then {x : Ax ≤ b, c ≤ x ≤ d} is an

integral polytope for all c, d ∈ Rn.
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A polyhedron P has the integer decomposition property if for every integer k ≥ 1, every integral

point in kP can be written as the sum of k integral points in P , that is, every integral point written as

the sum of k points in P can be written as the sum of k integral points in P .

Theorem 4.4 (Edmonds [15], see [38], Corollary 42.1e). The base polytope of a matroid has the

integer decomposition property.

4.2 The matroid M1, and basis partitions

Throughout this subsection we are given an integer τ ≥ 2, a weighted (τ, τ + 1)-bipartite digraph

(D = (V,A), w) that is sink-regular, and w ∈ {0, 1}A.

Lemma 4.5. Let J be a rounded 1-factor, and Q := dc(J). Then |Q| = disc(V ). Moreover, J is a

dijoin of D if, and only if, |Q ∩ U | ≥ 1 + disc(U) for every dicut δ+(U) of D.

Proof. This is a restatement of Lemma 3.8 (1) and (3).

Let us study subsets of V satisfying the equality and inequalities above.

Theorem 4.6. {Q ⊆ V : |Q| = disc(V ); |Q ∩ U | ≥ 1 + disc(U) for every dicut δ+(U) of D}, if

nonempty, is the set of bases of a matroid.

Proof. By Remark 4.1, U := {U ⊆ V : δ+(U) is a dicut of D} is a crossing family over ground set V .

Let

Q := {Q ⊆ V : |Q| = disc(V ), |Q ∩ U | ≥ 1 + disc(U) ∀U ∈ U}.

Assume that Q is nonempty. The family of the complements of the sets in Q can be described as

{Q ⊆ V : |Q| = |V | − disc(V ), |Q ∩ U | ≤ |U | − 1− disc(U) ∀U ∈ U}.

Since g(U) := |U |−1−disc(U) is a modular, hence submodular, function, and since the family above

is nonempty, it follows from Theorem 4.2 that the family forms the set of bases of a matroid, implying

in turn that the sets in Q form the bases of the dual matroid.

We shortly prove by using Theorem 4.3 that the family in Theorem 4.6 is indeed nonempty. For

now, recall that a(V ) denotes the set of active vertices of (D,w).
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Definition 4.7. Let M1(D,w) be the matroid over ground set a(V ) whose bases are the sets in {Q ⊆

a(V ) : |Q| = disc(V ), |Q ∩ U | ≥ 1 + disc(U) for every dicut δ+(U) of D}.

Observe that M1(D,w) is the restriction of the matroid in Theorem 4.6 to a(V ). Note that a(V ) is

determined by w.

Observe that if {a ∈ A : wa = 1} contained τ disjoint dijoins, then by Remark 3.2 and Lemma 4.5,

a(V ) could be partitioned in τ disjoint bases of M1(D,w) – let us verify this consequence indepen-

dently of the assumption.

Theorem 4.8. The ground set of M1(D,w) can be partitioned into τ bases.

Proof. By Remark 4.1, U := {U ⊆ V : δ+(U) is a dicut of D} is a crossing family over ground set

V . Consider the system x(V ) = disc(V ), x(U) ≥ 1 + disc(U) ∀U ∈ U . By Theorem 4.3, this linear

system is box-TDI. In particular, the polytope P defined by

x(V ) = disc(V )
x(U) ≥ 1 + disc(U) ∀U ∈ U
xu ∈ [0, 1] ∀u ∈ a(V )
xu = 0 ∀u ∈ V − a(V )

is integral. Observe that P is the base polytope of the matroid M1(D,w), so by Theorem 4.4, P has

the integer decomposition property. Let x := χa(V ) ∈ {0, 1}V , the incidence vector of a(V ). Then

x(V ) = |a(V )| = τ · disc(V ) by Lemma 3.7 (1). Moreover, by Lemma 3.7 (2),

x(U)− τ · disc(U) = |a(U)| − τ · disc(U) = |δ+(U)|

for every dicut δ+(U) of D. In particular, x(U) ≥ τ · (1 + disc(U)) for every dicut δ+(U) of D, as

every dicut of D has size at least τ . Thus, 1
τ x ∈ P , and so x is the sum of τ points in P . Thus, by

the integer decomposition property of P , x is the sum of τ integer points in P . That is, a(V ) admits a

partition into τ bases of M1(D,w).

4.3 Perfect b-matchings

Let G = (V,E) be a graph, and b ∈ ZV≥0. A vector x ∈ ZE≥0 is a perfect b-matching if x(δ(v)) = bv

for each v ∈ V . A subset J ⊆ E is a perfect b-matching if χJ is a perfect b-matching. A vertex cover

of G is a vertex subset that contains at least one end of every edge.
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Theorem 4.9 ([38], Corollary 21.1b). Let G = (V,E) be a bipartite graph, and b ∈ ZV≥0. Then there

exists a perfect b-matching x ∈ ZE≥0 if, and only if, b(K) ≥ 1
2b(V ) for each vertex cover K.

The theorem above has a neat reformulation in terms of bipartite digraphs and dicuts.

Theorem 4.10. Let D = (V,A) be a bipartite digraph with sources S and sinks T , where every vertex

has nonzero degree. Let b ∈ ZV≥0. Then there exists a perfect b-matching x ∈ ZA≥0 if, and only if,

b(S) = b(T ) and b(U ∩ S)− b(U ∩ T ) ≥ 0 for every dicut δ+(U).

Proof. (⇒) Let x ∈ ZA≥0 be a perfect b-matching. Clearly, b(S) = b(T ). Let δ+(U) be a dicut. Then

δ−(U) = ∅, so

x(δ+(U)) = x(δ+(U))− x(δ−(U)) =
∑
u∈U

(
x(δ+(u))− x(δ−(u))

)
= b(U ∩ S)− b(U ∩ T ),

so b(U∩S)−b(U∩T ) ≥ 0. (⇐) LetK ⊆ V be a vertex cover of the underlying undirected graph ofD.

IfK contains S or T , then b(K) ≥ 1
2b(V ) since b(S) = b(T ). Otherwise, letX := K∩S,Z := K∩T

and Y := T−Z. ThenX∪Y 6= ∅, V . Moreover, sinceK is a vertex cover of the underlying undirected

graph, there is no arc in D[V −K], so δ+(X ∪ Y ) is a dicut of D. Subsequently, b(X) ≥ b(Y ) by the

hypothesis. Thus,

b(K)− b(T ) = b(X) + b(Z)− b(Y )− b(Z) = b(X)− b(Y ) ≥ 0,

so b(K) ≥ 1
2b(V ). Thus, by Theorem 4.9, there exists a perfect b-matching x ∈ ZA≥0.

The connection to dicuts allows us to bring k-dijoins into the picture as well.

Lemma 4.11. Let τ ≥ 2 be an integer, and (D,w) a sink-regular weighted (τ, τ+1)-bipartite digraph.

Let Q1, . . . , Qk be disjoint bases of M1(D,w), b := k · χV +
∑k

i=1 χQi , and J ⊆ A a perfect

b-matching. Then J is a k-dijoin.

Proof. Denote by S the set of sources, and by T the set of sinks of D. Let J ⊆ A be a perfect

b-matching. Let δ+(U) be a dicut of D. Then

|J ∩ δ+(U)| = |J ∩ δ+(U)| − |J ∩ δ−(U)|
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=
∑
u∈U

(
|J ∩ δ+(u)| − |J ∩ δ−(u)|

)
= b(U ∩ S)− b(U ∩ T )

=

k∑
i=1

(
|U ∩Qi| − disc(U)

)
≥ k

where the last inequality holds because each Qi is a basis of M1(D,w) so |U ∩ Qi| ≥ 1 + disc(U).

As the inequality above holds for every dicut δ+(U), it follows that J is a k-dijoin.

4.4 Packing a dijoin and a (τ − 1)-dijoin in digraphs

Theorem 4.12. Let τ ≥ 2 be an integer, and D = (V,A) a sink-regular (τ, τ + 1)-bipartite digraph.

Then A can be partitioned into a dijoin and a (τ − 1)-dijoin.

Proof. Consider the sink-regular weighted (τ, τ + 1)-bipartite digraph (D,1). By Theorem 4.8,

M1(D,1) has disjoint bases Q1, . . . , Qτ . Let b := χV + χQ1 . Let S be the set of sources, and T

the set of sinks of D.

Claim 1. For every dicut δ+(U), b(U ∩ S)− b(U ∩ T ) ≥ 0.

Proof of Claim. We have

b(U ∩ S)− b(U ∩ T ) = |U ∩Q1| − disc(U) ≥ 1

where the last inequality holds because Q1 is a basis of M1(D,1). In particular, Claim 1 follows. ♦

Claim 2. There exists a perfect b-matching J ⊆ A.

Proof of Claim. Observe that

b(S) = |S|+ |Q1| = |S|+ disc(V ) = |T | = b(T ).

Moreover, by Claim 1, b(U ∩S)− b(U ∩T ) ≥ 0 for every dicut δ+(U). Thus, by Theorem 4.10, there

exists a perfect b-matching x ∈ ZA≥0. Since bu = 1 for every sink u, it follows that x ≤ 1, so x is the

incidence vector of a subset J ⊆ A, which is a perfect b-matching by definition. ♦
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By Lemma 4.11, J is a dijoin. Let b̄ := (τ − 1) · χV +
∑τ

i=2 χQi . The vertex degrees of D imply

that A is a perfect (b + b̄)-matching. In particular, by the choice of J , A − J is a perfect b̄-matching.

It now follows from Lemma 4.11 that A− J is a (τ − 1)-dijoin. Thus, we have a partition of A into a

dijoin J and a (τ − 1)-dijoin A− J , as desired.

The theorem above does not extend to the weighted setting, because Claim 2 in the proof does not

extend to the weighted setting, that is, we can no longer guarantee that a perfect b-matching using only

weight-1 arcs exists. This is analyzed in further detail in §5.2. We shall extend Theorem 4.12 to the

weighted setting in §6.2.

Theorem 4.13. Let D = (V,A) be a digraph where every dicut has size at least τ , and τ ≥ 2. Then

A can be partitioned into a dijoin and a (τ − 1)-dijoin. That is, there exists a dijoin J ⊆ A such that

|δ+(U)− J | ≥ τ − 1 for every dicut δ+(U).

Proof. If τ = 2, then the result follows from the correctness of the statement [τ ] for τ = 2. Otherwise,

τ ≥ 3. The result now follows from Theorem 2.17 (3) and Theorem 4.12.

Observe that if D had a packing of τ dijoins, then every dijoin J in the packing would satisfy

the conclusion of Theorem 4.13. The reader may wonder if any dijoin satisfying the conclusion of

Theorem 4.13 belongs to such a packing; we already saw in §1.3 that this unfortunately is not the case.

5 [wt, τ, 2] is true.

In this section we prove the primary result P3 and the secondary result S1. Throughout the section,

unless stated otherwise, we are given an integer τ ≥ 2, a weighted (τ, τ + 1)-bipartite digraph (D =

(V,A), w) that is sink-regular, and w ∈ {0, 1}A. Let A1 := {a ∈ A : wa = 1}.

5.1 The matroid M0, and bimatchability

Definition 5.1. LetQ ⊆ a(V ). We say thatQ is bimatchable in (D,w) ifQ = dc(J) for some rounded

1-factor J contained in A1.
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Theorem 5.2. {Q ⊆ a(V ) : Q is bimatchable in (D,w)} is the set of bases of a strongly base order-

able matroid, one whose ground set can be partitioned into bases.

Proof. By Remark 3.2 (3) and Lemma 3.5, a(V ) can be partitioned into bimatchable sets of (D,w). By

Lemma 3.8 (1), every bimatchable set has the same size, namely disc(V ). To finish the proof, it remains

to prove that for every two bimatchable sets Q1, Q2, there exists a bijection π : Q1 −Q2 → Q2 −Q1

such that Q14(X ∪ π(X)), Q24(X ∪ π(X)) are bimatchable for all X ⊆ Q1 −Q2. To this end, let

J1, J2 be rounded 1-factors such that dc(Ji) = Qi for i = 1, 2. Then the bijection from Lemma 3.12

is the desired one.

Definition 5.3. Let M0(D,w) be the matroid over ground set a(V ) whose bases are the bimatchable

sets of (D,w).

Lemma 5.4. Let Q ⊆ a(V ). Then Q is a basis of M0(D,w) if, and only if, |Q| = disc(V ), and

|Q ∩ U | ≥ disc(U) for every dicut δ+(U) of D[A1].

Proof. (⇒) Suppose Q is a basis of M0(D,w), i.e. Q is a bimatchable set of (D,w). Let J ⊆ A1

be a rounded 1-factor of D[A1] such that dc(J) = Q. By Lemma 3.8 (1) and (2) and Remark 3.9,

|Q| = disc(V ), and for every dicut δ+(U) of D[A1], |Q ∩ U | − disc(U) = |J ∩ δ+(U)| ≥ 0 so

|Q ∩ U | ≥ disc(U). (⇐) Suppose |Q| = disc(V ), and |Q ∩ U | ≥ disc(U) for every dicut δ+(U)

of D[A1]. Let b := χV + χQ, S the set of sources, and T the set of sinks of D[A1]. Then b(S) =

|S| + |Q| = |T | = b(T ). Moreover, for every dicut δ+(U) of D[A1], b(U ∩ S) − b(U ∩ T ) =

|U ∩ Q| − disc(U) ≥ 0. Thus, by Theorem 4.10, there exists a perfect b-matching J ⊆ A1. Observe

that J is a rounded 1-factor in A1 such that dc(J) = Q, so Q is bimatchable in (D,w), so Q is a basis

of M0(D,w).

5.2 Common bases of M0,M1, and admissibility

Definition 5.5. Let Q ⊆ a(V ). We say that Q is an admissible set of (D,w) if it is a common basis of

M0(D,w) and M1(D,w).

Lemma 5.6. Let Q ⊆ a(V ). Then the following statements are equivalent:
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1. Q is admissible in (D,w),

2. Q is a bimatchable set of (D,w), and every rounded 1-factor J satisfying dc(J) = Q is a dijoin

of D,

3. Q is a bimatchable set of (D,w), and some rounded 1-factor J satisfying dc(J) = Q is a dijoin

of D.

Proof. The equivalence of (1) and (2) follows from the definition of admissibility, Lemma 3.8 (3),

and the definitions of M0(D,w) and M1(D,w). The equivalence of (2) and (3) is an immediate

consequence of Lemma 3.8 (2) and (3) and Remark 3.9.

Remark 5.7. Supposew = 1. ThenQ is admissible in (D,w) if, and only if,Q is a basis ofM1(D,w).

Proof. (⇒) holds clearly. (⇐) Clearly every dicut of D is also a dicut of D[A1], and since A1 = A,

every dicut of D[A1] is also a dicut of D. Thus, every basis of M1(D,w) is also a basis of M0(D,w)

by Lemma 5.4. Thus, every basis of M1(D,w) is admissible in (D,w).

Looking back, this remark illustrates why Theorem 4.12 works for unweighted digraphs, and not

necessarily weighted digraphs: in the unweighted setting, unlike in the weighted setting, being a basis

of M1(D,w) implies admissibility, which in turn implies the existence of perfect b-matchings in A1.

5.3 Packing admissible sets under strong base orderability

Theorem 5.8 (Davies and McDiarmid [13], see [38], Theorem 42.13). Let M0,M1 be matroids over

the same ground set, and suppose that the ground set can be partitioned into τ bases ofMi, for i = 0, 1.

If M0,M1 are strongly base orderable, then the ground set can be partitioned into τ common bases of

M0,M1.

Theorem 5.9. Suppose M1(D,w) is strongly base orderable. Then the ground set can be partitioned

into τ admissible sets.

Proof. Recall that a set is admissible if and only it is a common basis of M0(D,w) and M1(D,w).

Thus, our task is to partition a(V ) into τ common bases of M0(D,w) and M1(D,w). We know by
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Theorem 5.2 that M0(D,w) is a strongly base orderable matroid whose ground set a(V ) can be par-

titioned into τ bases. We know by Theorem 4.8 that a(V ) can also be partitioned into τ bases of

M1(D,w), and M1(D,w) is a strongly base orderable matroid by the hypothesis. Thus, by Theo-

rem 5.8, a(V ) can be partitioned into τ common bases of M0(D,w) and M1(D,w).

5.4 Weighted packings under strong base orderability

Lemma 5.10 (Brualdi [4]). If a matroid is strongly base orderable, then so is every restriction of it.

Theorem 5.11. SupposeM1(D,w) is strongly base orderable. Then there exists aw-weighted packing

of dijoins of size τ .

Proof. We proceed by induction on τ ≥ 2; the base case and the induction step are both resolved in

Claim 3. By Theorem 5.9, a(V ) can be partitioned into τ admissible sets Q1, . . . , Qτ . By Lemma 5.6,

there exists a rounded 1-factor J1 ⊆ A1 such that dc(J1) = Q1, and J1 is a dijoin of D. Let b :=

(τ − 1) · χV +
∑τ

i=2 χQi .

Claim 1. A1 − J1 is a perfect b-matching, and a (τ − 1)-dijoin of D.

Proof of Claim. Let b1 := χV + χQ1 . Since J1 is a perfect b1-matching and A1 a perfect (b1 + b)-

matching, A1 − J1 is a perfect b-matching. By Lemma 4.11, A1 − J1 is a (τ − 1)-dijoin of D. ♦

Claim 2. (D,χA1−J1) is a sink-regular weighted (τ − 1, τ)-bipartite digraph, and M1(D,χA1−J1) is

a strongly base orderable matroid.

Proof of Claim. The first part follows from Claim 1. Since the active vertices of (D,χA1−J1) are

Q2 ∪ · · · ∪ Qτ , we get that M1(D,χA1−J1) = M1(D,w) \ Q1. Thus, the second part of the claim

follows from Lemma 5.10. ♦

Claim 3. A1−J1 can be partitioned into τ − 1 rounded 1-factors J2, . . . , Jτ each of which is a dijoin

of D.

Proof of Claim. If τ = 2, then A1 − J1 is a rounded 1-factor that is a dijoin by Claim 1. This proves

the base case of the induction. Otherwise, τ ≥ 3. By Claim 2, we may apply the induction hypothesis
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to (D,χA1−J1), and obtain that its set of weight 1 arcs, namely A1 − J1, can be partitioned into τ − 1

rounded 1-factors each of which is a dijoin of D. ♦

Claims 2 and 3 finish the proof.

We shall see in §7 that M1(D,w), even for w = 1, is not necessarily strongly base orderable. We

shall strengthen this result in §6.3.

5.5 [wt, τ, 2] is true.

Theorem 5.12 (Brualdi [5]). Let M be a matroid over ground set V . Then for every two distinct bases

B1, B2, and for each u ∈ B1 −B2, there exists a v ∈ B2 −B1 such that B14{u, v}, B24{u, v} are

bases.

Corollary 5.13. Every matroid of rank at most two is strongly base orderable.

Theorem 5.14. Let (D = (V,A), w) be a sink-regular weighted (τ, τ + 1)-bipartite digraph such that

ρ(τ,D,w) ≤ 2. Then there exists a w-weighted packing of dijoins of size τ .

Proof. Observe that M1(D,w) has rank ρ(τ,D,w), which is at most 2. Thus, by Corollary 5.13,

M1(D,w) is strongly base orderable, so Theorem 5.11 proves the existence of a w-weighted packing

of dijoins of size τ .

In the appendix (§A), we give an elementary though less insightful proof of Theorem 5.14, based

solely on the content of §3.

Theorem 5.15. Let (D = (V,A), w) be a weighted digraph where every dicut has weight at least τ ,

and τ ≥ 2. Suppose ρ(τ,D,w) ≤ 2. Then there exists a w-weighted packing of dijoins of size τ . That

is, [wt, τ, 2] is true.

Proof. By Theorem 5.14, [wt, τ, 2] holds for all sink-regular weighted (τ, τ + 1)-bipartite digraphs. In

particular, by Theorem 2.16 (2), [wt, τ, 2] is true.
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6 [3, 3] is true.

In this section we prove the primary result P4 and the secondary result S2. Throughout the section,

unless stated otherwise, we are given an integer τ ≥ 2, a weighted (τ, τ + 1)-bipartite digraph (D =

(V,A), w) that is sink-regular, and w ∈ {0, 1}A. Let A1 := {a ∈ A : wa = 1}.

6.1 k-Admissible sets and their existence

Definition 6.1. Let k ∈ [τ ] and Q ⊆ a(V ). We say that Q is a k-admissible set of (D,w) if it is the

union of k disjoint bases of M0(D,w), and also the union of k disjoint bases of M1(D,w).

The notion of k-admissibility is crucial for the rest of this section. Let us prove the existence of

k-admissible sets. This fact, though not needed, will help the reader contextualize the results of this

section. Let U0 be the set of U ⊆ V such that δ+(U) is a dicut of D[A1], and U1 the set of U ⊆ V

such that δ+(U) is a dicut of D.

Lemma 6.2. Let k ∈ [τ ] and Q ⊆ a(V ). Then Q is a k-admissible set of (D,w) if, and only if,

|Q| = k · disc(V )
|Q ∩ U | ≥ k · disc(U) ∀U ∈ U0
|Q ∩ U | ≥ k(1 + disc(U)) ∀U ∈ U1.

Proof. (⇒) follows immediately from the definition. (⇐) Let x = χQ ∈ {0, 1}a(V ). Then x ∈

(kP0) ∩ (kP1), where Pi is the base polytope of Mi(D,w) for i ∈ {0, 1}. Since Pi has the integer

decomposition property by Theorem 4.4, it follows that x can be written as the sum of k integer points

in Pi, for each i ∈ {0, 1}. That is, Q is the union of k disjoint bases of Mi(D,w), for each i ∈ {0, 1},

so Q is k-admissible.

Theorem 6.3. Let k ∈ [τ ]. Then (D,w) has a k-admissible set.

Proof. By Remark 4.1, U0,U1 are crossing families over ground set V . Consider the system x(V ) =

k · disc(V ); x(U) ≥ k · disc(U) ∀U ∈ U0; x(U) ≥ k(1 + disc(U)) ∀U ∈ U1. By Theorem 4.3, this
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system is box-TDI. In particular, the polytope P defined by

x(V ) = k · disc(V )
x(U) ≥ k · disc(U) ∀U ∈ U0
x(U) ≥ k(1 + disc(U)) ∀U ∈ U1
xu ∈ [0, 1] ∀u ∈ a(V )
xu = 0 ∀u ∈ V − a(V )

if nonempty, is integral. Thus, by Lemma 6.2, the vertices of P are precisely to the characteristic

vectors of the k-admissible sets of (D,w). Thus, to finish the proof, it suffices to show that P is a

nonempty polytope. To this end, let x := χa(V ) ∈ {0, 1}V . Then x(V ) = |a(V )| = τ · disc(V ) by

Lemma 3.7 (1). Moreover, by Lemma 3.7 (2) and Remark 3.9,

x(U)− τ · disc(U) = |a(U)| − τ · disc(U) = w(δ+(U))

for every dicut δ+(U) of D[A1]. In particular, x(U) ≥ τ · disc(U) for every dicut δ+(U) of D[A1],

and x(U) ≥ τ · (1 + disc(U)) for every dicut δ+(U) of D, as every dicut of D has weight at least τ .

Thus, kτ x ∈ P , so P is nonempty, as required.

6.2 Packing a dijoin and a (τ − 1)-dijoin in weighted digraphs

Theorem 6.4. Suppose the set of active vertices of (D,w) is partitioned into an admissible set Q and

a (τ − 1)-admissible set Q′. Then there exist a sink-regular weighted (1, 2)-bipartite digraph (D, c)

such that M1(D, c) = M1(D,w)|Q, and a sink-regular weighted (τ − 1, τ)-bipartite digraph (D, c′)

such that M1(D, c
′) = M1(D,w)|Q′, and c + c′ = w. In particular, A1 can be partitioned into a

dijoin and a (τ − 1)-dijoin of D.

Proof. Let b := χV + χQ ∈ ZV≥0, S the set of sources, and T the set of sinks of D.

Claim 1. There exists a perfect b-matching J ⊆ A1. Moreover, J is a dijoin of D.

Proof of Claim. Observe that b(S) = |S|+ |Q| = |S|+ disc(V ) = |T | = b(T ). Moreover, for every

dicut δ+(U) of D[A1], we have

b(U ∩ S)− b(U ∩ T ) = |U ∩Q| − disc(U) ≥ 0
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where the rightmost inequality holds because Q is a basis of M0(D,w). Thus, by Theorem 4.10, there

exists a perfect b-matching x ∈ ZA1
≥0. Since bu = 1 for every sink u, it follows that x ≤ 1, so x is the

incidence vector of some J ⊆ A1, which by definition is a perfect b-matching. Finally, since Q is a

basis of M1(D,w), it follows from Lemma 4.11 that J is a dijoin of D. ♦

Let b̄ := (τ − 1) · χV + χQ′ .

Claim 2. A1 − J is a perfect b̄-matching, and also a (τ − 1)-dijoin of D.

Proof of Claim. Observe that A1 is a (b + b̄)-matching, so A1 − J is a perfect b̄-matching. Since

Q′ is the union of τ − 1 disjoint bases of M1(D,w), it follows from Lemma 4.11 that A1 − J is a

(τ − 1)-dijoin. ♦

Claim 3. (D,χJ) is a sink-regular weighted (1, 2)-bipartite digraph and (D,χA1−J) is a sink-regular

weighted (τ − 1, τ)-bipartite digraph. Moreover, M1(D,χJ) = M1(D,w)|Q and M1(D,χA1−J) =

M1(D,w)|Q′.

Proof of Claim. The first part of the claim follows from Claims 1 and 2. The second part follows from

the facts that Q,Q′ are the sets of active vertices of (D,χJ), (D,χA1−J), respectively. ♦

Claims 1-3 finish the proof.

Observe that the assumption of Theorem 6.4 holds if w = 1 by Theorem 4.8 and Remark 5.7.

Thus, Theorem 6.4 extends Theorem 4.12 to the weighted setting. Observe that the assumption of

Theorem 6.4 cannot always hold, because [wt, τ ] is not true for τ = 2.

6.3 Weighted packings under strong base orderability, II

Theorem 6.5. Suppose the set of active vertices of (D,w) is partitioned into an admissible set Q and

a (τ − 1)-admissible set Q′. Suppose further that M1(D,w)|Q′ is strongly base orderable. Then there

exists a w-weighted packing of dijoins of size τ .

Proof. By Theorem 6.4, there exist a sink-regular weighted (1, 2)-bipartite digraph (D, c) such that

M1(D, c) = M1(D,w)|Q, and a sink-regular weighted (τ − 1, τ)-bipartite digraph (D, c′) such that
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M1(D, c
′) = M1(D,w)|Q′, and c + c′ = w. Pick J ⊆ A1 such that χJ = c; note that χA1−J = c′.

Observe that J is a dijoin, and A1 − J is a (τ − 1)-dijoin.

We know that M1(D, c
′) = M1(D,w)|Q′ is strongly base orderable. Thus, by Theorem 5.11,

(D, c′) has a c′-weighted packing of dijoins of size τ − 1. This weighted packing, together with the

c-weighted packing J , yields a w-weighted packing of dijoins of size τ in (D,w), as desired.

We shall see in Section 7 that given a partition into Q and Q′, the second assumption of Theo-

rem 6.5, that M1(D,w)|Q′ is strongly base orderable, does not necessarily hold, even if w = 1.

6.4 [3, 3] is true.

Denote by K4 the complete graph on 4 vertices. Recall that M(K4) is the cycle matroid of K4.

Lemma 6.6 (Brualdi [6]). Up to isomorphism, M(K4) is the only matroid on at most six elements that

is not strongly base orderable.

Lemma 6.7 (proved in §6.5). LetM be a matroid over 9 elements whose ground set can be partitioned

into bases Q1, Q2, Q3. Then we may choose Q1, Q2, Q3 such that M |(Qi ∪ Qj) 6∼= M(K4) for some

distinct i, j ∈ [3].

Theorem 6.8. Let τ ≥ 3 be an integer, andD = (V,A) a sink-regular (τ, τ+1)-bipartite digraph such

that ρ(τ,D) = 3. There exist disjoint bases Q1, . . . , Qτ of M1(D,1) such that M1(D,1)|(Q1 ∪Q2)

is strongly base orderable.

Proof. By Theorem 4.8, there exist disjoint bases Q1, . . . , Qτ of M1(D,1). Consider the matroid

M := M1(D,1)|(Q1 ∪ Q2 ∪ Q3), which has 9 elements and its ground set is partitioned into bases

Q1, Q2, Q3. By Lemma 6.7, we may choose Q1, Q2, Q3 such that M |(Q1 ∪ Q2) 6∼= M(K4), so by

Lemma 6.6, M |(Q1 ∪ Q2) is strongly base orderable. Since M1(D,1)|(Q1 ∪ Q2) = M |(Q1 ∪ Q2),

the disjoint bases Q1, Q2, Q3, Q4, . . . , Qτ prove the theorem.

Theorem 6.9. Let D = (V,A) a sink-regular (3, 4)-bipartite digraph such that ρ(3, D) ≤ 3. Then A

can be partitioned into three disjoint dijoins.
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Proof. If ρ(3, D) ≤ 2, then the result follows from Theorem 5.14. Otherwise, ρ(3, D) = 3. The result

then follows from Theorem 6.8, combined with Theorem 6.5.

Theorem 6.10. Let D = (V,A) be a digraph where every dicut has size at least 3. Suppose ρ(3, D) ≤

3. Then there exist 3 disjoint dijoins. That is, [3, 3] is true.

Proof. This follows from Theorem 6.9 and Theorem 2.17 (2).

6.5 M(K4)-restrictions in matroids of rank three

It remains to prove Lemma 6.7, which requires a fair bit of Matroid Theory [35]. Let M be a matroid

of rank r over a finite ground set E. A hyperplane is a subset X ⊆ E satisfying any of the following

equivalent conditions: (i) X is a flat of rank r − 1, (ii) X is a maximal non-spanning set, (iii) E −X

is a cocircuit.

Lemma 6.11 ([35], Proposition 1.5.6). Let E be a finite set, and Λ a family of subsets of E each of

size at least 3 such that every two distinct members of Λ meet in at most 1 element. Let I be the set of

subsets X of E of size at most 3 such that no member of Λ contains 3 elements of X . Then I is the

family of independent sets of a simple matroid of rank at most 3 whose rank-1 flats are the 1-element

subsets of E, and whose rank-2 flats are the members of Λ together with all 2-element subsets Y of E

for which no member of Λ contains Y . Moreover, every simple matroid of rank at most 3 arises in this

way.

We will be working with simple matroids of rank three. In this case, by Lemma 6.11, we may rep-

resent M geometrically via a set of points and lines, as follows: the points correspond to the elements

of E, and the set of lines Λ correspond to a subset of the set of the hyperplanes. More precisely, the

lines in Λ correspond to the hyperplanes with at least 3 elements; the other hyperplanes are precisely

the 2-element subsets Y for which no line in Λ contains Y . In particular, every two distinct points

belong to exactly one hyperplane, and therefore at most one line. Observe that three collinear points

correspond to a circuit of size three. Note that the lines in Λ displayed may not be straight, and may

even be circles.
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For example, consider M(K4). Observe that the hyperplanes are the three perfect matchings

{i, π(i)}, {j, π(j)}, {k, π(k)} and the four triangles including, say, {i, j, k}. Throughout this sub-

section, we assume that M(K4) follows this labeling. We can then represent the hyperplanes corre-

sponding to the triangles as the four lines in Figure 6 (a).
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Figure 6: (a) The geometric representation M(K4). (b)-(c) The geometric representations of the two

matroids of Lemma 6.13, where (b) is the non-Fano matroid F−7 , and (c) is the Fano matroid F7. The

unlabeled points follow the labeling of (a).

Remark 6.12. Consider a matroid M and a deletion minor M \ e. Then for every hyperplane X of

M such that e /∈ X , X is a hyperplane of M \ e. Moreover, for every hyperplane X ′ of M \ e, either

X ′ or X ′ ∪ {e} is a hyperplane of M (but not both).

Denote by F7 the Fano matroid, and by F−7 the non-Fano matroid, represented in Figure 6.

Lemma 6.13. Let M7 be a simple matroid of rank 3 over ground set {i, π(i), j, π(j), k, π(k), s} such

that M7 \s = M(K4) and M7 \ i ∼= M(K4). Then M7
∼= F−7 or F7 with the geometric representation

provided in Figure 6 (b) or (c), respectively.

Proof. Consider the geometric representation of M7 \ s, below. By Remark 6.12, for every hy-

perplane X ′ of M7 \ s, either X ′ or X ′ ∪ {s} is a hyperplane of M7. In particular, M7 contains

four lines `0, `i, `j , `k where `0 = {i, j, k} or {i, j, k, s}, `i = {i, π(j), π(k)} or {i, π(j), π(k), s},

`j = {j, π(i), π(k)} or {j, π(i), π(k), s}, and `k = {k, π(i), π(j)} or {k, π(i), π(j), s}.

Consider now the matroid M7 \ i, which is isomorphic to M(K4). In particular, in the geo-

metric representation of M7 \ i, there are precisely 4 lines. Observe that by Remark 6.12, the two
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lines `j , `k of M7 excluding i are among the four lines of M7 \ i. In particular, `j , `k have size

3, so `j = {j, π(i), π(k)} and `k = {k, π(i), π(j)}. The other two lines of M7 \ i lead by Re-

mark 6.12 to two lines `s, `′s of M7. The other two lines of M7 \ i are either {j, k, s}, {π(j), π(k), s}

or {j, π(j), s}, {k, π(k), s}, so there are two cases.

Case 1: `s − {i} = {j, k, s}, `′s − {i} = {π(j), π(k), s} are lines of M7 \ i. In this case, |`0 ∩ `s| ≥ 2,

so `0 = `s = {i, j, k, s}. Similarly, |`i ∩ `′s| ≥ 2, so `i = `′s = {i, π(j), π(k), s}. But then

|`0 ∩ `i| ≥ 2, a contradiction as `0 6= `i.

Case 2: `s − {i} = {j, π(j), s}, `′s − {i} = {k, π(k), s} are lines of M7 \ i. In this case, `0 and

`s are distinct lines of M7, so |`0 ∩ `s| ≤ 1, so s /∈ `0 and i /∈ `s, so `0 = {i, j, k} and

`s = {j, π(j), s}. Similarly, `i and `′s are distinct lines of M7, so |`i ∩ `′s| ≤ 1, so s /∈ `i and

i /∈ `′s, so `i = {i, π(j), π(k)} and `′s = {k, π(k), s}.

Picking up where Case 2 left off, we have the following partial geometric representation of M7, where
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⇡(k)

<latexit sha1_base64="s8/qbN7E6idaeuA1LPI1k9/guPk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlpu6XK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSvqh6l9Vas1ap3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MH4ZONAA==</latexit>s

the lines `0, `i, `j , `k, `s, `′s have been drawn with solid curves. Since every two elements ofM7 belong

to exactly one hyperplane, it can be readily checked that there is at most one additional line, namely

{i, π(i), s}, thereby finishing the proof.

Denote by U2,4 the uniform matroid over ground set [4] of rank 2, i.e. it is the matroid whose
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circuits are {1, 2, 3}, {2, 3, 4}, {1, 3, 4}, {1, 2, 4}, so U2,4 shows up in any line with at least four points.

Remark 6.14. Let M be a simple matroid of rank 3 whose geometric representation has a line con-

taining distinct points a, b, c, d. Then M |{a, b, c, d} ∼= U2,4.

<latexit sha1_base64="2RRwxLXlY8TROIoM98j2WcOjpro=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXgnoMevEY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mnGCfkQHkoecUWOlhzI97xVLbsWdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE177Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNi4p3WaneV0u1myyOPJzAKZTBgyuowR3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8Ai5mNUw==</latexit>

(a)
<latexit sha1_base64="KWh0RLJ0bw8em/x3PU2+HIlN2FQ=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXgnoMevEY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mnGCfkQHkoecUWOlh3Jw3iuW3Io7B1klXkZKkKHeK351+zFLI5SGCap1x3MT40+oMpwJnBa6qcaEshEdYMdSSSPU/mR+6pScWaVPwljZkobM1d8TExppPY4C2xlRM9TL3kz8z+ukJrz2J1wmqUHJFovCVBATk9nfpM8VMiPGllCmuL2VsCFVlBmbTsGG4C2/vEqaFxXvslK9r5ZqN1kceTiBUyiDB1dQgzuoQwMYDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4AjR6NVA==</latexit>

(b)

<latexit sha1_base64="s8/qbN7E6idaeuA1LPI1k9/guPk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlpu6XK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSvqh6l9Vas1ap3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MH4ZONAA==</latexit>s
<latexit sha1_base64="s8/qbN7E6idaeuA1LPI1k9/guPk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlpu6XK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSvqh6l9Vas1ap3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MH4ZONAA==</latexit>s

<latexit sha1_base64="4mSRiAOC1HPbUsbyd7QN48TyFAA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsN+3azSbsToQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEY3878hyeujYjVPU4S7kd0qEQoGEUrNbFfrrhVdw6ySrycVCBHo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NApObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYbXfiZUkiJXbLEoTCXBmMy+JgOhOUM5sYQyLeythI2opgxtNiUbgrf88ippX1S9y2qtWavUb/I4inACp3AOHlxBHe6gAS1gwOEZXuHNeXRenHfnY9FacPKZY/gD5/MH4xeNAQ==</latexit>

t
<latexit sha1_base64="4mSRiAOC1HPbUsbyd7QN48TyFAA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsN+3azSbsToQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEY3878hyeujYjVPU4S7kd0qEQoGEUrNbFfrrhVdw6ySrycVCBHo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NApObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYbXfiZUkiJXbLEoTCXBmMy+JgOhOUM5sYQyLeythI2opgxtNiUbgrf88ippX1S9y2qtWavUb/I4inACp3AOHlxBHe6gAS1gwOEZXuHNeXRenHfnY9FacPKZY/gD5/MH4xeNAQ==</latexit>

t

Figure 7: The geometric representations of the two matroids of Lemma 6.15. The unlabeled points

follow the labeling of Figure 6 (a).

Lemma 6.15. LetM8 be a simple matroid over ground set {i, π(i), j, π(j), k, π(k), s, t} such thatM8\

{s, t} = M(K4), M8 \ {i, t} ∼= M(K4), and M8 \ {i′, s} ∼= M(K4), for some i′ ∈ {i, π(i), j, π(j),

k, π(k)}. Then either i′ ∈ {j, π(j)} and M8 is the matroid with geometric representation in Fig-

ure 7 (a), or i′ ∈ {k, π(k)} and M8 is the matroid with geometric representation in Figure 7 (b). In

particular, M8|{k, π(k), s, t} ∼= U2,4 or M8|{j, π(j), s, t} ∼= U2,4.

Proof. By Lemma 6.13, M8 \ t,M8 \ s are the matroids with the geometric representations below,

where for M8 \ t the dashed line may or may not be present, and for M8 \ s at least two of the

three dashed lines must be present. For each hyperplane X ′ of M8 \ t, either X ′ or X ′ ∪ {t} is a
<latexit sha1_base64="gQ0QZrHgZBkqf996/QQVBa6B0JU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlJu+XK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSvqh6l9Vas1ap3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MH0muM9g==</latexit>

i

<latexit sha1_base64="Fnwhd7Ta5Tw0dHaaWO+17yDDvLg=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLA7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAXj+7nfekKleSwfzSRBP6IDyUPOqLFSfdQrltyyuwBZJ15GSpCh1it+dfsxSyOUhgmqdcdzE+NPqTKcCZwVuqnGhLIxHWDHUkkj1P50ceiMXFilT8JY2ZKGLNTfE1MaaT2JAtsZUTPUq95c/M/rpCa89adcJqlByZaLwlQQE5P516TPFTIjJpZQpri9lbAhVZQZm03BhuCtvrxOmldl77pcqVdK1bssjjycwTlcggc3UIUHqEEDGCA8wyu8OSPnxXl3PpatOSebOYU/cD5/ANPvjPc=</latexit>

j

<latexit sha1_base64="22ayNhSfxXcShAAyfExNzJXubLY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5rhfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ+6LqXVZrzVqlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f1XOM+A==</latexit>

k

<latexit sha1_base64="A2p3YDEN5TZYslzhR+36Z6C90JI=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsquFPVY9OKxgv2AdinZNNvGZpMlyQpl6X/w4kERr/4fb/4b0+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbS0TRWiLSC5VN8CaciZoyzDDaTdWFEcBp51gcjv3O09UaSbFg5nG1I/wSLCQEWys1O7HrMrOB+WKW3MzoFXi5aQCOZqD8ld/KEkSUWEIx1r3PDc2foqVYYTTWamfaBpjMsEj2rNU4IhqP82unaEzqwxRKJUtYVCm/p5IcaT1NApsZ4TNWC97c/E/r5eY8NpPmYgTQwVZLAoTjoxE89fRkClKDJ9agoli9lZExlhhYmxAJRuCt/zyKmlf1LzLWv2+Xmnc5HEU4QROoQoeXEED7qAJLSDwCM/wCm+OdF6cd+dj0Vpw8plj+APn8wffuI6u</latexit>

⇡(i)

<latexit sha1_base64="NUvI2Y83Hhrb2VS9SXe4E3RrxWU=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsqulOqx6MVjBfsB7VKyabZNm02WJCuUpf/BiwdFvPp/vPlvTNs9aOuDgcd7M8zMC2LOtHHdbye3sbm1vZPfLeztHxweFY9PWlomitAmkVyqToA15UzQpmGG006sKI4CTtvB5G7ut5+o0kyKRzONqR/hoWAhI9hYqdWLWXl82S+W3Iq7AFonXkZKkKHRL371BpIkERWGcKx113Nj46dYGUY4nRV6iaYxJhM8pF1LBY6o9tPFtTN0YZUBCqWyJQxaqL8nUhxpPY0C2xlhM9Kr3lz8z+smJrzxUybixFBBlovChCMj0fx1NGCKEsOnlmCimL0VkRFWmBgbUMGG4K2+vE5aVxWvVqk+VEv12yyOPJzBOZTBg2uowz00oAkExvAMr/DmSOfFeXc+lq05J5s5hT9wPn8A4T2Orw==</latexit>

⇡(j)

<latexit sha1_base64="hATvqJnJcOEEZinp0sVi2mOLyZ8=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsquFPVY9OKxgv2AdinZNNvGZpMlyQpl6X/w4kERr/4fb/4b0+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbS0TRWiLSC5VN8CaciZoyzDDaTdWFEcBp51gcjv3O09UaSbFg5nG1I/wSLCQEWys1O7HrDo5H5Qrbs3NgFaJl5MK5GgOyl/9oSRJRIUhHGvd89zY+ClWhhFOZ6V+ommMyQSPaM9SgSOq/TS7dobOrDJEoVS2hEGZ+nsixZHW0yiwnRE2Y73szcX/vF5iwms/ZSJODBVksShMODISzV9HQ6YoMXxqCSaK2VsRGWOFibEBlWwI3vLLq6R9UfMua/X7eqVxk8dRhBM4hSp4cAUNuIMmtIDAIzzDK7w50nlx3p2PRWvByWeO4Q+czx/iwo6w</latexit>

⇡(k)

<latexit sha1_base64="s8/qbN7E6idaeuA1LPI1k9/guPk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlpu6XK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSvqh6l9Vas1ap3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MH4ZONAA==</latexit>s

<latexit sha1_base64="gQ0QZrHgZBkqf996/QQVBa6B0JU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlJu+XK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSvqh6l9Vas1ap3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MH0muM9g==</latexit>

i

<latexit sha1_base64="Fnwhd7Ta5Tw0dHaaWO+17yDDvLg=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLA7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAXj+7nfekKleSwfzSRBP6IDyUPOqLFSfdQrltyyuwBZJ15GSpCh1it+dfsxSyOUhgmqdcdzE+NPqTKcCZwVuqnGhLIxHWDHUkkj1P50ceiMXFilT8JY2ZKGLNTfE1MaaT2JAtsZUTPUq95c/M/rpCa89adcJqlByZaLwlQQE5P516TPFTIjJpZQpri9lbAhVZQZm03BhuCtvrxOmldl77pcqVdK1bssjjycwTlcggc3UIUHqEEDGCA8wyu8OSPnxXl3PpatOSebOYU/cD5/ANPvjPc=</latexit>

j

<latexit sha1_base64="22ayNhSfxXcShAAyfExNzJXubLY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5rhfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ+6LqXVZrzVqlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f1XOM+A==</latexit>

k

<latexit sha1_base64="A2p3YDEN5TZYslzhR+36Z6C90JI=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsquFPVY9OKxgv2AdinZNNvGZpMlyQpl6X/w4kERr/4fb/4b0+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbS0TRWiLSC5VN8CaciZoyzDDaTdWFEcBp51gcjv3O09UaSbFg5nG1I/wSLCQEWys1O7HrMrOB+WKW3MzoFXi5aQCOZqD8ld/KEkSUWEIx1r3PDc2foqVYYTTWamfaBpjMsEj2rNU4IhqP82unaEzqwxRKJUtYVCm/p5IcaT1NApsZ4TNWC97c/E/r5eY8NpPmYgTQwVZLAoTjoxE89fRkClKDJ9agoli9lZExlhhYmxAJRuCt/zyKmlf1LzLWv2+Xmnc5HEU4QROoQoeXEED7qAJLSDwCM/wCm+OdF6cd+dj0Vpw8plj+APn8wffuI6u</latexit>

⇡(i)

<latexit sha1_base64="NUvI2Y83Hhrb2VS9SXe4E3RrxWU=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsqulOqx6MVjBfsB7VKyabZNm02WJCuUpf/BiwdFvPp/vPlvTNs9aOuDgcd7M8zMC2LOtHHdbye3sbm1vZPfLeztHxweFY9PWlomitAmkVyqToA15UzQpmGG006sKI4CTtvB5G7ut5+o0kyKRzONqR/hoWAhI9hYqdWLWXl82S+W3Iq7AFonXkZKkKHRL371BpIkERWGcKx113Nj46dYGUY4nRV6iaYxJhM8pF1LBY6o9tPFtTN0YZUBCqWyJQxaqL8nUhxpPY0C2xlhM9Kr3lz8z+smJrzxUybixFBBlovChCMj0fx1NGCKEsOnlmCimL0VkRFWmBgbUMGG4K2+vE5aVxWvVqk+VEv12yyOPJzBOZTBg2uowz00oAkExvAMr/DmSOfFeXc+lq05J5s5hT9wPn8A4T2Orw==</latexit>

⇡(j)

<latexit sha1_base64="hATvqJnJcOEEZinp0sVi2mOLyZ8=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsquFPVY9OKxgv2AdinZNNvGZpMlyQpl6X/w4kERr/4fb/4b0+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbS0TRWiLSC5VN8CaciZoyzDDaTdWFEcBp51gcjv3O09UaSbFg5nG1I/wSLCQEWys1O7HrDo5H5Qrbs3NgFaJl5MK5GgOyl/9oSRJRIUhHGvd89zY+ClWhhFOZ6V+ommMyQSPaM9SgSOq/TS7dobOrDJEoVS2hEGZ+nsixZHW0yiwnRE2Y73szcX/vF5iwms/ZSJODBVksShMODISzV9HQ6YoMXxqCSaK2VsRGWOFibEBlWwI3vLLq6R9UfMua/X7eqVxk8dRhBM4hSp4cAUNuIMmtIDAIzzDK7w50nlx3p2PRWvByWeO4Q+czx/iwo6w</latexit>

⇡(k)

<latexit sha1_base64="4mSRiAOC1HPbUsbyd7QN48TyFAA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsN+3azSbsToQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEY3878hyeujYjVPU4S7kd0qEQoGEUrNbFfrrhVdw6ySrycVCBHo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NApObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYbXfiZUkiJXbLEoTCXBmMy+JgOhOUM5sYQyLeythI2opgxtNiUbgrf88ippX1S9y2qtWavUb/I4inACp3AOHlxBHe6gAS1gwOEZXuHNeXRenHfnY9FacPKZY/gD5/MH4xeNAQ==</latexit>

t

<latexit sha1_base64="XQG0Exm3ox30xFRGMcC+asBb0Y0=">AAAB9XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKaI5BL16ECOYByRpmJ73JkNnZZaZXCSH/4cWDIl79F2/+jZNkD5pY0FBUddPdFSRSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZONYc6j2WsWwEzIIWCOgqU0Eo0sCiQ0AyG11O/+QjaiFjd4ygBP2J9JULBGVrp4bZb6RjASKjUUOwWS27ZnYEuEy8jJZKh1i1+dXoxTyNQyCUzpu25CfpjplFwCZNCJzWQMD5kfWhbqlgExh/Prp7QE6v0aBhrWwrpTP09MWaRMaMosJ0Rw4FZ9Kbif147xbDij4VKUgTF54vCVFKM6TQC2hMaOMqRJYxrYW+lfMA042iDKtgQvMWXl0njrOxdlM/vzkvVqyyOPDkix+SUeOSSVMkNqZE64USTZ/JK3pwn58V5dz7mrTknmzkkf+B8/gA8sZJb</latexit>

M8 \ t
<latexit sha1_base64="IXSHekfgG3+ZUzqzIMbEnZRqOOc=">AAAB9XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKaI5BL16ECOYByRpmJ73JkNnZZWZWCSH/4cWDIl79F2/+jZNkD5pY0FBUddPdFSSCa+O6305uZXVtfSO/Wdja3tndK+4fNHScKoZ1FotYtQKqUXCJdcONwFaikEaBwGYwvJ76zUdUmsfy3owS9CPalzzkjBorPdx2Kx2NJuIy1UR3iyW37M5AlomXkRJkqHWLX51ezNIIpWGCat323MT4Y6oMZwInhU6qMaFsSPvYtlTSCLU/nl09ISdW6ZEwVrakITP198SYRlqPosB2RtQM9KI3Ff/z2qkJK/6YyyQ1KNl8UZgKYmIyjYD0uEJmxMgSyhS3txI2oIoyY4Mq2BC8xZeXSeOs7F2Uz+/OS9WrLI48HMExnIIHl1CFG6hBHRgoeIZXeHOenBfn3fmYt+acbOYQ/sD5/AE7LZJa</latexit>

M8 \ s

hyperplane of M8 by Remark 6.12. Thus, M8 contains the four lines `0, `i, `j , `k such that `0 − {t} =
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{i, j, k}, `i−{t} = {i, π(j), π(k)}, `j−{t} = {j, π(i), π(k)}, `k−{t} = {k, π(i), π(j)}. These lines

exclude s, so they must be lines ofM8 \s by Remark 6.12, so `0 = {i, j, k}, `i = {i, π(j), π(k)}, `j =

{j, π(i), π(k)}, `k = {k, π(i), π(j)}.

Consider the matroid M8 \ t. For each r ∈ {i, j, k}, if the line through s, r is present, then let `sr

denote the line of M8 such that `sr − {t} = {r, π(r), s}. Observe that `sj , `sk exist, and `si may or

may not exist.

Similarly, consider the matroid M8 \ s. For each r ∈ {i, j, k}, if the line through t, r is present,

then let `tr denote the line of M8 such that `tr − {s} = {r, π(r), t}. Observe that at least two of

`ti, `tj , `sk exist.

Claim 1. Suppose both `sr, `tr exist for some r ∈ {i, j, k}. Then `sr = `tr = {r, π(r), s, t}.

Proof of Claim. Observe that {r, π(r)} ⊆ `sr ∩ `tr, so |`tj ∩ `sj | ≥ 2, implying in turn that `sr =

`tr = {r, π(r), s, t}. ♦

Claim 2. {r ∈ {i, j, k} : `sr exists} and {r ∈ {i, j, k} : `tr exists} have at most one index in common.

Proof of Claim. For if not, then by Claim 1, {r, π(r), s, t}, {r′, π(r′), s, t} are lines of M8 for distinct

r, r′ ∈ {i, j, k}, a contradiction as the two lines are distinct and meet in 2 points. ♦

Claim 3. `si does not exist, `ti exists, and exactly one of `tj , `tk exists.

Proof of Claim. We know that at least two of `ti, `tj , `tk exist. We also know that `sj , `sk exist. Thus,

the claim follows from Claim 2; ♦

Thus, inM8\t there is no line through s, i, and inM8\s there is a line through t, i, and either there

is a line through t, k, or a line through t, j, but not both. In the former case we must have i′ ∈ {j, π(j)},

and in the latter i′ ∈ {k, π(k)}.

Case 1: i′ ∈ {j, π(j)}. In this case, we have the following geometric representations for M8 \ t,M8 \ s.

We know that M8 contains the lines `0, `i, `j , `k, `sj , `sk, `ti, `tk. We have already obtained the

descriptions for `0, `i, `j , `k. By Claim 1, we have `sk = `tk = {k, π(k), s, t}. Since `sj , `sk are

distinct lines, and s ∈ `sj ∩`sk, we get that t /∈ `sj , so `sj = {j, π(j), s}. Similarly, since `ti, `tk
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<latexit sha1_base64="gQ0QZrHgZBkqf996/QQVBa6B0JU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlJu+XK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSvqh6l9Vas1ap3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MH0muM9g==</latexit>

i

<latexit sha1_base64="Fnwhd7Ta5Tw0dHaaWO+17yDDvLg=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLA7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAXj+7nfekKleSwfzSRBP6IDyUPOqLFSfdQrltyyuwBZJ15GSpCh1it+dfsxSyOUhgmqdcdzE+NPqTKcCZwVuqnGhLIxHWDHUkkj1P50ceiMXFilT8JY2ZKGLNTfE1MaaT2JAtsZUTPUq95c/M/rpCa89adcJqlByZaLwlQQE5P516TPFTIjJpZQpri9lbAhVZQZm03BhuCtvrxOmldl77pcqVdK1bssjjycwTlcggc3UIUHqEEDGCA8wyu8OSPnxXl3PpatOSebOYU/cD5/ANPvjPc=</latexit>

j

<latexit sha1_base64="22ayNhSfxXcShAAyfExNzJXubLY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5rhfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ+6LqXVZrzVqlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f1XOM+A==</latexit>

k

<latexit sha1_base64="A2p3YDEN5TZYslzhR+36Z6C90JI=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsquFPVY9OKxgv2AdinZNNvGZpMlyQpl6X/w4kERr/4fb/4b0+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbS0TRWiLSC5VN8CaciZoyzDDaTdWFEcBp51gcjv3O09UaSbFg5nG1I/wSLCQEWys1O7HrMrOB+WKW3MzoFXi5aQCOZqD8ld/KEkSUWEIx1r3PDc2foqVYYTTWamfaBpjMsEj2rNU4IhqP82unaEzqwxRKJUtYVCm/p5IcaT1NApsZ4TNWC97c/E/r5eY8NpPmYgTQwVZLAoTjoxE89fRkClKDJ9agoli9lZExlhhYmxAJRuCt/zyKmlf1LzLWv2+Xmnc5HEU4QROoQoeXEED7qAJLSDwCM/wCm+OdF6cd+dj0Vpw8plj+APn8wffuI6u</latexit>

⇡(i)

<latexit sha1_base64="NUvI2Y83Hhrb2VS9SXe4E3RrxWU=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsqulOqx6MVjBfsB7VKyabZNm02WJCuUpf/BiwdFvPp/vPlvTNs9aOuDgcd7M8zMC2LOtHHdbye3sbm1vZPfLeztHxweFY9PWlomitAmkVyqToA15UzQpmGG006sKI4CTtvB5G7ut5+o0kyKRzONqR/hoWAhI9hYqdWLWXl82S+W3Iq7AFonXkZKkKHRL371BpIkERWGcKx113Nj46dYGUY4nRV6iaYxJhM8pF1LBY6o9tPFtTN0YZUBCqWyJQxaqL8nUhxpPY0C2xlhM9Kr3lz8z+smJrzxUybixFBBlovChCMj0fx1NGCKEsOnlmCimL0VkRFWmBgbUMGG4K2+vE5aVxWvVqk+VEv12yyOPJzBOZTBg2uowz00oAkExvAMr/DmSOfFeXc+lq05J5s5hT9wPn8A4T2Orw==</latexit>

⇡(j)

<latexit sha1_base64="hATvqJnJcOEEZinp0sVi2mOLyZ8=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsquFPVY9OKxgv2AdinZNNvGZpMlyQpl6X/w4kERr/4fb/4b0+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbS0TRWiLSC5VN8CaciZoyzDDaTdWFEcBp51gcjv3O09UaSbFg5nG1I/wSLCQEWys1O7HrDo5H5Qrbs3NgFaJl5MK5GgOyl/9oSRJRIUhHGvd89zY+ClWhhFOZ6V+ommMyQSPaM9SgSOq/TS7dobOrDJEoVS2hEGZ+nsixZHW0yiwnRE2Y73szcX/vF5iwms/ZSJODBVksShMODISzV9HQ6YoMXxqCSaK2VsRGWOFibEBlWwI3vLLq6R9UfMua/X7eqVxk8dRhBM4hSp4cAUNuIMmtIDAIzzDK7w50nlx3p2PRWvByWeO4Q+czx/iwo6w</latexit>

⇡(k)

<latexit sha1_base64="s8/qbN7E6idaeuA1LPI1k9/guPk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlpu6XK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSvqh6l9Vas1ap3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MH4ZONAA==</latexit>s

<latexit sha1_base64="gQ0QZrHgZBkqf996/QQVBa6B0JU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlJu+XK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSvqh6l9Vas1ap3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MH0muM9g==</latexit>

i

<latexit sha1_base64="Fnwhd7Ta5Tw0dHaaWO+17yDDvLg=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLA7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAXj+7nfekKleSwfzSRBP6IDyUPOqLFSfdQrltyyuwBZJ15GSpCh1it+dfsxSyOUhgmqdcdzE+NPqTKcCZwVuqnGhLIxHWDHUkkj1P50ceiMXFilT8JY2ZKGLNTfE1MaaT2JAtsZUTPUq95c/M/rpCa89adcJqlByZaLwlQQE5P516TPFTIjJpZQpri9lbAhVZQZm03BhuCtvrxOmldl77pcqVdK1bssjjycwTlcggc3UIUHqEEDGCA8wyu8OSPnxXl3PpatOSebOYU/cD5/ANPvjPc=</latexit>

j

<latexit sha1_base64="22ayNhSfxXcShAAyfExNzJXubLY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5rhfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ+6LqXVZrzVqlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f1XOM+A==</latexit>

k

<latexit sha1_base64="A2p3YDEN5TZYslzhR+36Z6C90JI=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsquFPVY9OKxgv2AdinZNNvGZpMlyQpl6X/w4kERr/4fb/4b0+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbS0TRWiLSC5VN8CaciZoyzDDaTdWFEcBp51gcjv3O09UaSbFg5nG1I/wSLCQEWys1O7HrMrOB+WKW3MzoFXi5aQCOZqD8ld/KEkSUWEIx1r3PDc2foqVYYTTWamfaBpjMsEj2rNU4IhqP82unaEzqwxRKJUtYVCm/p5IcaT1NApsZ4TNWC97c/E/r5eY8NpPmYgTQwVZLAoTjoxE89fRkClKDJ9agoli9lZExlhhYmxAJRuCt/zyKmlf1LzLWv2+Xmnc5HEU4QROoQoeXEED7qAJLSDwCM/wCm+OdF6cd+dj0Vpw8plj+APn8wffuI6u</latexit>

⇡(i)

<latexit sha1_base64="NUvI2Y83Hhrb2VS9SXe4E3RrxWU=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsqulOqx6MVjBfsB7VKyabZNm02WJCuUpf/BiwdFvPp/vPlvTNs9aOuDgcd7M8zMC2LOtHHdbye3sbm1vZPfLeztHxweFY9PWlomitAmkVyqToA15UzQpmGG006sKI4CTtvB5G7ut5+o0kyKRzONqR/hoWAhI9hYqdWLWXl82S+W3Iq7AFonXkZKkKHRL371BpIkERWGcKx113Nj46dYGUY4nRV6iaYxJhM8pF1LBY6o9tPFtTN0YZUBCqWyJQxaqL8nUhxpPY0C2xlhM9Kr3lz8z+smJrzxUybixFBBlovChCMj0fx1NGCKEsOnlmCimL0VkRFWmBgbUMGG4K2+vE5aVxWvVqk+VEv12yyOPJzBOZTBg2uowz00oAkExvAMr/DmSOfFeXc+lq05J5s5hT9wPn8A4T2Orw==</latexit>

⇡(j)

<latexit sha1_base64="hATvqJnJcOEEZinp0sVi2mOLyZ8=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsquFPVY9OKxgv2AdinZNNvGZpMlyQpl6X/w4kERr/4fb/4b0+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbS0TRWiLSC5VN8CaciZoyzDDaTdWFEcBp51gcjv3O09UaSbFg5nG1I/wSLCQEWys1O7HrDo5H5Qrbs3NgFaJl5MK5GgOyl/9oSRJRIUhHGvd89zY+ClWhhFOZ6V+ommMyQSPaM9SgSOq/TS7dobOrDJEoVS2hEGZ+nsixZHW0yiwnRE2Y73szcX/vF5iwms/ZSJODBVksShMODISzV9HQ6YoMXxqCSaK2VsRGWOFibEBlWwI3vLLq6R9UfMua/X7eqVxk8dRhBM4hSp4cAUNuIMmtIDAIzzDK7w50nlx3p2PRWvByWeO4Q+czx/iwo6w</latexit>

⇡(k)

<latexit sha1_base64="4mSRiAOC1HPbUsbyd7QN48TyFAA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsN+3azSbsToQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEY3878hyeujYjVPU4S7kd0qEQoGEUrNbFfrrhVdw6ySrycVCBHo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NApObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYbXfiZUkiJXbLEoTCXBmMy+JgOhOUM5sYQyLeythI2opgxtNiUbgrf88ippX1S9y2qtWavUb/I4inACp3AOHlxBHe6gAS1gwOEZXuHNeXRenHfnY9FacPKZY/gD5/MH4xeNAQ==</latexit>

t

<latexit sha1_base64="XQG0Exm3ox30xFRGMcC+asBb0Y0=">AAAB9XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKaI5BL16ECOYByRpmJ73JkNnZZaZXCSH/4cWDIl79F2/+jZNkD5pY0FBUddPdFSRSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZONYc6j2WsWwEzIIWCOgqU0Eo0sCiQ0AyG11O/+QjaiFjd4ygBP2J9JULBGVrp4bZb6RjASKjUUOwWS27ZnYEuEy8jJZKh1i1+dXoxTyNQyCUzpu25CfpjplFwCZNCJzWQMD5kfWhbqlgExh/Prp7QE6v0aBhrWwrpTP09MWaRMaMosJ0Rw4FZ9Kbif147xbDij4VKUgTF54vCVFKM6TQC2hMaOMqRJYxrYW+lfMA042iDKtgQvMWXl0njrOxdlM/vzkvVqyyOPDkix+SUeOSSVMkNqZE64USTZ/JK3pwn58V5dz7mrTknmzkkf+B8/gA8sZJb</latexit>

M8 \ t
<latexit sha1_base64="IXSHekfgG3+ZUzqzIMbEnZRqOOc=">AAAB9XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKaI5BL16ECOYByRpmJ73JkNnZZWZWCSH/4cWDIl79F2/+jZNkD5pY0FBUddPdFSSCa+O6305uZXVtfSO/Wdja3tndK+4fNHScKoZ1FotYtQKqUXCJdcONwFaikEaBwGYwvJ76zUdUmsfy3owS9CPalzzkjBorPdx2Kx2NJuIy1UR3iyW37M5AlomXkRJkqHWLX51ezNIIpWGCat323MT4Y6oMZwInhU6qMaFsSPvYtlTSCLU/nl09ISdW6ZEwVrakITP198SYRlqPosB2RtQM9KI3Ff/z2qkJK/6YyyQ1KNl8UZgKYmIyjYD0uEJmxMgSyhS3txI2oIoyY4Mq2BC8xZeXSeOs7F2Uz+/OS9WrLI48HMExnIIHl1CFG6hBHRgoeIZXeHOenBfn3fmYt+acbOYQ/sD5/AE7LZJa</latexit>

M8 \ s

are distinct lines, and t ∈ `ti ∩ `tk, we get that s /∈ `ti, so `ti = {i, π(i), t}. Thus, we have

the following partial geometric representation for M8, where the 7 lines `0, `i, `j , `k, `sj , `sk, `ti

have been drawn. In this partial representation, the only pairs of points not contained in a line
<latexit sha1_base64="gQ0QZrHgZBkqf996/QQVBa6B0JU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlJu+XK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSvqh6l9Vas1ap3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MH0muM9g==</latexit>

i

<latexit sha1_base64="Fnwhd7Ta5Tw0dHaaWO+17yDDvLg=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLA7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAXj+7nfekKleSwfzSRBP6IDyUPOqLFSfdQrltyyuwBZJ15GSpCh1it+dfsxSyOUhgmqdcdzE+NPqTKcCZwVuqnGhLIxHWDHUkkj1P50ceiMXFilT8JY2ZKGLNTfE1MaaT2JAtsZUTPUq95c/M/rpCa89adcJqlByZaLwlQQE5P516TPFTIjJpZQpri9lbAhVZQZm03BhuCtvrxOmldl77pcqVdK1bssjjycwTlcggc3UIUHqEEDGCA8wyu8OSPnxXl3PpatOSebOYU/cD5/ANPvjPc=</latexit>

j

<latexit sha1_base64="22ayNhSfxXcShAAyfExNzJXubLY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5rhfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ+6LqXVZrzVqlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f1XOM+A==</latexit>

k

<latexit sha1_base64="A2p3YDEN5TZYslzhR+36Z6C90JI=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsquFPVY9OKxgv2AdinZNNvGZpMlyQpl6X/w4kERr/4fb/4b0+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbS0TRWiLSC5VN8CaciZoyzDDaTdWFEcBp51gcjv3O09UaSbFg5nG1I/wSLCQEWys1O7HrMrOB+WKW3MzoFXi5aQCOZqD8ld/KEkSUWEIx1r3PDc2foqVYYTTWamfaBpjMsEj2rNU4IhqP82unaEzqwxRKJUtYVCm/p5IcaT1NApsZ4TNWC97c/E/r5eY8NpPmYgTQwVZLAoTjoxE89fRkClKDJ9agoli9lZExlhhYmxAJRuCt/zyKmlf1LzLWv2+Xmnc5HEU4QROoQoeXEED7qAJLSDwCM/wCm+OdF6cd+dj0Vpw8plj+APn8wffuI6u</latexit>

⇡(i)

<latexit sha1_base64="NUvI2Y83Hhrb2VS9SXe4E3RrxWU=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsqulOqx6MVjBfsB7VKyabZNm02WJCuUpf/BiwdFvPp/vPlvTNs9aOuDgcd7M8zMC2LOtHHdbye3sbm1vZPfLeztHxweFY9PWlomitAmkVyqToA15UzQpmGG006sKI4CTtvB5G7ut5+o0kyKRzONqR/hoWAhI9hYqdWLWXl82S+W3Iq7AFonXkZKkKHRL371BpIkERWGcKx113Nj46dYGUY4nRV6iaYxJhM8pF1LBY6o9tPFtTN0YZUBCqWyJQxaqL8nUhxpPY0C2xlhM9Kr3lz8z+smJrzxUybixFBBlovChCMj0fx1NGCKEsOnlmCimL0VkRFWmBgbUMGG4K2+vE5aVxWvVqk+VEv12yyOPJzBOZTBg2uowz00oAkExvAMr/DmSOfFeXc+lq05J5s5hT9wPn8A4T2Orw==</latexit>

⇡(j)

<latexit sha1_base64="hATvqJnJcOEEZinp0sVi2mOLyZ8=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsquFPVY9OKxgv2AdinZNNvGZpMlyQpl6X/w4kERr/4fb/4b0+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbS0TRWiLSC5VN8CaciZoyzDDaTdWFEcBp51gcjv3O09UaSbFg5nG1I/wSLCQEWys1O7HrDo5H5Qrbs3NgFaJl5MK5GgOyl/9oSRJRIUhHGvd89zY+ClWhhFOZ6V+ommMyQSPaM9SgSOq/TS7dobOrDJEoVS2hEGZ+nsixZHW0yiwnRE2Y73szcX/vF5iwms/ZSJODBVksShMODISzV9HQ6YoMXxqCSaK2VsRGWOFibEBlWwI3vLLq6R9UfMua/X7eqVxk8dRhBM4hSp4cAUNuIMmtIDAIzzDK7w50nlx3p2PRWvByWeO4Q+czx/iwo6w</latexit>

⇡(k)

<latexit sha1_base64="s8/qbN7E6idaeuA1LPI1k9/guPk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlpu6XK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSvqh6l9Vas1ap3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MH4ZONAA==</latexit>s
<latexit sha1_base64="4mSRiAOC1HPbUsbyd7QN48TyFAA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsN+3azSbsToQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEY3878hyeujYjVPU4S7kd0qEQoGEUrNbFfrrhVdw6ySrycVCBHo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NApObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYbXfiZUkiJXbLEoTCXBmMy+JgOhOUM5sYQyLeythI2opgxtNiUbgrf88ippX1S9y2qtWavUb/I4inACp3AOHlxBHe6gAS1gwOEZXuHNeXRenHfnY9FacPKZY/gD5/MH4xeNAQ==</latexit>

t

are {s, i}, {s, π(i)}, {t, j}, {t, π(j)}. It can be readily checked now that no additional line can

exist, so the partial representation above is in fact complete, thereby leading to the outcome in

Figure 7 (a).

Case 2: i′ ∈ {k, π(k)}. Similarly, we get that M8 is the matroid represented in Figure 7 (b).

Observe that by Remark 6.14, in Case 1, `sk is a 4-point line so M8|{k, π(k), s, t} ∼= U2,4, and in Case

2, `sj is a 4-point line so M8|{j, π(j), s, t} ∼= U2,4.

We are now ready to prove Lemma 6.7, whose statement is repeated here for convenience:

Let M be a matroid over 9 elements whose ground set can be partitioned into bases

Q1, Q2, Q3. Then we may choose Q1, Q2, Q3 such that M |(Qi ∪ Qj) 6∼= M(K4) for

some distinct i, j ∈ [3].
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Proof of Lemma 6.7. Observe that M is a loopless matroid of rank 3. If M is not simple, then it con-

tains parallel elements e, f which inevitably belong to distinctQi, Qj , soM |(Qi∪Qj) 6∼= M(K4). Oth-

erwise,M is simple. Let s, t be distinct elements ofQ3. By Theorem 5.12, there exists i ∈ Q2 such that

Q24{i, s}, Q34{i, s} are bases, and there exists i′ ∈ Q2 such that Q24{i′, t}, Q34{i′, t} are bases

ofM . Observe thatQ1, Q2, Q3, andQ1, Q24{i, s}, Q34{i, s}, andQ1, Q24{i′, t}, Q34{i′, t} each

form a partition of the ground set into 3 bases. Thus, we may assume that M |(Q1 ∪ Q2) = M(K4),

M |(Q1∪(Q24{i, s})) ∼= M(K4), andM |(Q1∪(Q24{i′, t})) ∼= M(K4). LetM8 := M |(Q1∪Q2∪

{s, t}), a simple matroid over ground set {i, π(i), j, π(j), k, π(k), s, t} such thatM8\{s, t} = M(K4),

M8 \ {i, t} = M |(Q1 ∪ (Q24{i, s})) ∼= M(K4), and M8 \ {i′, s} = M |(Q1 ∪ (Q24{i′, t})) ∼=

M(K4). It therefore follows from Lemma 6.15 that M8|{r, π(r), s, t} ∼= U2,4 for some r ∈ {j, k}.

Next let Q′1, Q
′
2 be a partition of E(K4) into two spanning trees of K4, where Q′1 contains the

perfect matching {r, π(r)}. Then Q′1, Q
′
2 is a partition of Q1 ∪ Q2 into two bases of M |(Q1 ∪ Q2),

and therefore of M . Thus, Q′1, Q
′
2, Q3 is a partition of the ground set of M into 3 bases. Since

{r, π(r), s, t} ⊆ Q′1 ∪ Q3, it follows that M |(Q′1 ∪ Q3) has a U2,4 restriction, so M |(Q′1 ∪ Q3) 6∼=

M(K4), so Q′1, Q
′
2, Q3 is the desired partition.

7 An example

Figure 8 displays the (3, 4)-bipartite digraph D27 = (V,A) on 27 vertices, introduced in §1.3, with

ρ(3, D27) = 3 and active vertices [9]. Moreover, with the solid arcs having weight 1 and the dashed

arcs having weight 0, we get a weighted (2, 3)-bipartite digraph (D27, w27) with ρ(2, D27, w27) = 3

and active vertices [6]. Together, D27 and (D27, w27) address several questions raised in the previous

two sections. Let us elaborate.

Let Q1 := {1, 2, 3}, Q2 := {4, 5, 6}, and Q3 := {7, 8, 9}. It can be readily checked that each

Qi, i = 1, 2, 3 is a basis for M1(D27,1), and thus for M0(D27,1). Moreover, since M1(D27, w27) =

M1(D27,1)|(Q1 ∪ Q2), it follows that Q1, Q2 are bases for M1(D27, w27). Moreover, it can be

readily checked that in M1(D27, w27), the symmetric basis exchanges between Q1, Q2 are the pairs

{4, 1}, {4, 2}, {4, 3}, {5, 3}, {6, 3}, which do not include a perfect pairing between Q1, Q2. Conse-
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quently, Q1, Q2 prove that M1(D27, w27), and therefore M1(D27,1), is not strongly base orderable.

(Observe that M1(D27, w27) ∼= M(K4).) This shows that the assumption of Theorem 5.11 does not

hold for (D,w) = (D27,1). The example also shows that the second assumption of Theorem 6.5 does

not hold for (D,w) = (D27,1), Q = Q3, and Q′ = Q1 ∪Q2.

1

2

3

4

56

7

8

9

Figure 8: The (3, 4)-bipartite digraph D27 and the weighted (2, 3)-bipartite digraph (D27, w27). Solid

arcs have weight 1, and dashed arcs have weight 0. Q1 := {1, 2, 3}, Q2 := {4, 5, 6}, and Q3 :=

{7, 8, 9} partition the active vertices into bases of M1(D27,1), such that M1(D27,1)|(Q1 ∪ Q2) is

isomorphic to M(K4), and is therefore not strongly base orderable.

8 Directions for further research

Let us present several directions for future research.

8.1 M1(D,1) and strongly base orderability

Question 8.1. Let τ ≥ 3 be an integer, and D = (V,A) a sink-regular (τ, τ + 1)-bipartite digraph.

Are there disjoint bases Q1, . . . , Qτ of M1(D,1) such that M1(D,1)|(Q1 ∪ · · · ∪ Qτ−1) is strongly

base orderable?

59



Observe that if the answer to Question 8.1 is affirmative, which is the case for ρ(τ,D) = 3 by

Theorem 6.8, then by Theorem 6.5, A can be partitioned into τ dijoins. One can then apply the

Decompose, Lift, and Reduce procedure for (unweighted) digraphs to obtain similar conclusions for

all digraphs.

8.2 Disjoint rounded 1-factor witnesses

Question 8.2. Let τ ≥ 3 be an integer, and D = (V,A) a sink-regular (τ, τ + 1)-bipartite digraph.

Let Q1, . . . , Qτ be disjoint bases of M0(D,1).

1. When are there disjoint rounded 1-factors Ji, Jj , Jk such that dc(Ji) = Qi, dc(Jj) = Qj and

dc(Jk) = Qk, for some distinct i, j, k ∈ [τ ]?

2. When are there disjoint rounded 1-factors J1, . . . , Jτ such that dc(Ji) = Qi for i ∈ [τ ]?

8.3 Finding three disjoint dijoins in planar digraphs, and Barnette’s Conjecture

We mentioned the following result in the introduction.

Theorem 8.3 ([7]). Let (D = (V,A), w) be a weighted digraph, where every dicut has weight at least

two. Suppose D is planar, and D[{a ∈ A : wa 6= 0}] is a spanning subdigraph of D that is connected

as an undirected graph. Then there exists a w-weighted packing of dijoins of size two.

Conjecture 8.4. Let D = (V,A) be a sink-regular (3, 4)-bipartite digraph that is planar, and let

Q1, Q2, Q3 be disjoint bases ofM1(D,1). Then there exist a rounded 1-factor J such that dc(J) = Q1

and D \ J is connected.

Theorem 8.5. Suppose Conjecture 8.4 is true. Then [3; pl] is true. That is, every planar digraph where

every dicut has size at least three, has three disjoint dijoins.

Proof. By Theorem 2.17 (1), it suffices to prove [3; pl] for sink-regular (3, 4)-bipartite digraphs. To

this end, let D = (V,A) be a sink-regular (3, 4)-bipartite digraph that is planar. By Theorem 4.8, there

exist disjoint basesQ1, Q2, Q3 ofM1(D,1). As Conjecture 8.4 is assumed true, there exists a rounded

1-factor J1 such that dc(J1) = Q1 and D \ J1 is connected. Let b := 2χV + χQ2 + χQ3 . Since

60



dc(J1) = Q1, A − J1 is a perfect b-matching. It follows from Lemma 4.11 that A − J1 is a 2-dijoin.

In particular, in the weighted digraph (D,w) where w = χA−J1 , every dicut has weight at least two.

As D \ J1 is connected, it follows that D[{a ∈ A : wa 6= 0}] is a spanning subdigraph of D that is

connected as an undirected graph. Thus, by Theorem 8.3, (D,w) has a w-weighted packing of dijoins

of size two, that is, A− J1 can be partitioned into two dijoins, say J2, J3. Thus we have three disjoint

dijoins J1, J2, J3 in D.

Note the resemblance between Conjecture 8.4 and Barnette’s Conjecture [3] that (?) for every 3-

connected cubic bipartite graph G that is planar, there exists a perfect matching M such that G \M

is connected, i.e., G has a Hamilton circuit. (?)

8.4 Fractional weighted packing of dijoins

Let C be a clutter over ground set A. Let w ∈ ZA≥0. A fractional w-weighted packing of (C, w) value ν

consists of a fractional assignment λC ≥ 0 to every C ∈ C such that 1>λ = ν, and
∑

(λC : a ∈ C ∈

C) ≤ wa for every a ∈ A. Let ν?(C, w) be the maximum value of a fractional w-weighted packing of

(C, w). Observe that ν?(C, w) ≥ ν(C, w). By Weak LP Duality, τ(C, w) ≥ ν?(C, w). C is ideal if for

all w ∈ ZA≥0, τ(C, w) = ν?(C, w) [12]. It is known that a clutter is ideal if, and only if, the blocker is

ideal [30, 23].

The theorem of Lucchesi and Younger on weighted packings of dicuts implies that the clutter of

minimal dicuts of a digraph is ideal [33], implying by Remark 1.8 that the clutter of minimal dijoins of

a digraph is also ideal. In other words,

Theorem 8.6 (see [9], §1.3.4). Let (D,w) be a weighted digraph where the minimum weight of a dicut

is τ . Then there exists a fractional w-weighted packing λ of dijoins of value τ .

Question 8.7. Can we choose λ such that

1. ‖λ‖∞ ≥ 1
2?

2. λ is 1
2 -integral?

3. λ is dyadic, i.e. 1
2k

-integral for some integer k ≥ 0?
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What if w = 1?

The following consequence of our results relates to Question 8.7 (1).

Theorem 8.8. Let D = (V,A) be a digraph where the minimum size of a dicut is τ . Then there exists

a fractional packing λ of dijoins of value τ such that ‖λ‖∞ ≥ 1.

Proof. If τ = 1, then this holds trivially. Otherwise, τ ≥ 2. By Theorem 4.13, there exists a dijoin J

such that for every dicut δ+(U), |δ+(U) − J | ≥ τ − 1. Let w := χA−J . Then the inequality implies

that the minimum weight of a dijoin of (D,w) is τ − 1. Thus, by Theorem 8.6, (D,w) has a fractional

w-weighted packing λ of dijoins of value τ − 1. Update λ by setting λJ := 1. The updated λ is the

desired fractional packing.

Given an ideal clutter C with covering number τ , the value of the optimization problem λ(C) :=

max{‖λ‖∞ : λ is a fractional packing of value τ} was studied recently by Ferchiou in [19], where he

proved a beautiful min-max theorem involving λ(C) (see Theorem 34).

It is shown in [41] that given a weighted digraph (D,w) where the minimum weight of a dicut is τ ,

there exists a 1
2 -integral w-weighted packing of dijoins of value τ

2 , giving some hope for a positive

answer to Question 8.7 (2).

Let us now provide some rationale for Question 8.7 (3).

Theorem 8.9 ([1]). Let C be an ideal clutter with covering number τ , where τ = 1, 2. Then there

exists a dyadic fractional packing of value τ .

Theorem 8.10. Let D = (V,A) be a digraph where the minimum size of a dicut is τ , and τ ≤ 3. Then

there exists a fractional packing of dijoins of value τ that is dyadic.

Proof. If τ ≤ 2, then there exists a packing of dijoins of size τ , so we are done. Otherwise, τ = 3.

It follows from Theorem 4.13 that A can be partitioned into a dijoin J1 and a (τ − 1)-dijoin J2. Let

λ1 be the fractional χJ1-weighted packing of (D,χJ1) that assigns a value of 1 to J1, and a value of

0 to every other dijoin. Consider the weighted digraph (D,χJ2); the minimum weight of a dicut is

τ − 1 = 2. Thus, by Theorem 8.9, (D,χJ2) has a fractional χJ2-weighted packing λ2 of dijoins of
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value 2 that is dyadic. Observe that λ1 + λ2 is a fractional packing of dijoins of D value τ that is

dyadic, as required.

8.5 The τ = 2 Conjecture, and fixing the refuted Edmonds-Giles Conjecture

A clutter C over ground set A has the max-flow min-cut (MFMC) property if τ(C, w) = ν(C, w) for

all w ∈ ZA≥0 [40], and has the packing property if τ(C, w) = ν(C, w) for all w ∈ {0, 1,∞}A [11].

Observe that the MFMC property implies idealness. The Replication Conjecture predicts that the

packing property also implies the MFMC property [8]. Lehman’s seminal theorem on minimally non-

ideal clutters [31] implies that the packing property implies idealness [11], providing some evidence

for the conjecture.

There is a conjecture that implies the Replication Conjecture. A clutter C is minimally non-packing

if it does not have the packing property but every proper minor does. The τ = 2 Conjecture predicts

that every ideal minimally non-packing clutter has a cover of size two [11]. The conjecture is known

to imply the Replication Conjecture [11]. For the clutter of minimal dijoins of a weighted digraph, the

conjecture reduces to the following.

Conjecture 8.11. Let (D,w) be a weighted digraph such that C(D,w) is minimally non-packing. Then

(D,w) has a dicut of weight two.

This conjecture would follow from the following conjecture, which we propose as a fix to the

refuted Edmonds-Giles Conjecture.

Conjecture 8.12. Let (D,w) be a weighted digraph where the minimum weight of a dicut is τ , where

τ ≥ 3. Then there exist weighted digraphs (D, c), (D, c′), where w = c+ c′, the minimum weight of a

dicut in (D, c) is 1, and the minimum weight of a dicut in (D, c′) is τ − 1.

By applying the Decompose, Lift, and Reduce procedure, and Theorem 6.4, this conjecture would

follow if the answer to the following question were affirmative.

Question 8.13. Let τ ≥ 3 be an integer, and (D = (V,A), w) a sink-regular weighted (τ, τ + 1)-

bipartite digraph. Can the set of active vertices be partitioned into an admissible set and a (τ − 1)-

admissible set?
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for fruitful discussions about this work.

References
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A An elementary proof of [wt, τ, 2]

The following remark shows that in a digraph connected as an undirected graph, a dicut is uniquely

determined by its shore.

Remark A.1. LetD = (V,A) be a digraph that is connected as an undirected graph. Let δ+(U), δ+(W )

be dicuts such that δ+(U) = δ+(W ). Then U = W .

Proof. Since δ+(U) = δ+(W ) and δ−(U) = δ−(W ) = ∅, we have δ(U) = δ(W ), so δ(U4W ) =

δ(U)4δ(W ) = ∅. Since D is a connected graph, either U4W = ∅ or U4W = V . However,

the latter cannot occur as it would imply that U,W are complementary, which is not possible as both

δ+(U), δ+(W ) are nonempty dicuts. Thus, U4W = ∅, so that U = W , as required.

Definition A.2. Given a digraph D = (V,A) connected as an undirected graph, a dicut δ+(U) is

trivial if |U | = 1, |V | − 1, and is non-trivial otherwise.

Alternative proof of Theorem 5.14. After replacing every arc a of nonzero weight with wa arcs of

weight 1 with the same head and tail, if necessary, we may assume that w ∈ {0, 1}A. Let Ai :=

{a ∈ A : wa = i} for i = 0, 1. We proceed by induction on the number n ≥ 0 of non-trivial minimum

weight dicuts.

Induction step We postpone the base case n = 0 to later. For now, let us first prove the induction

step. Assume that n ≥ 1. Let δ+(U) be a minimum weight dicut that is non-trivial. Let (D1, w1)

be obtained from (D,w) by replacing V − U with a single vertex u1, where all the arcs of D with

both ends in V − U are removed, all the arcs with exactly one end in V − U are now attached to u1

and have the same weight, and all the other arcs remain intact with the same weight. Similarly, let

(D2, w2) be obtained from (D,w) by replacing U with a single vertex u2, where all the arcs of D with

both ends in U are removed, all the arcs with exactly one end in U are now attached to u2 and have the

same weight, and all the other arcs remain intact with the same weight. Note that the weight-1 arcs of

(Di, wi), i = 1, 2 share the weight-1 arcs in δ+(U); let us label δ+D(U) ∩A1 = {a1, . . . , aτ}.

Observe that every (non-trivial) dicut of (Di, wi) is also a (non-trivial) dicut of (D,w) of the same

weight. Thus, every dicut of (Di, wi) has weight at least τ . Moreover, u1 is a sink of (D1, w1) of
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weighted degree τ , and u2 is a source of (D2, w2) of weighted degree τ . Subsequently, ρ(τ,D,w) =

ρ(τ,D1, w1) + ρ(τ,D2, w2), and (Di, wi) is a sink-regular weighted (τ, τ + 1)-bipartite digraph, and

the number of non-trivial minimum weight dicuts of (Di, wi) is at most n− 1.

We may therefore apply the induction hypothesis to conclude that (Di, wi) has a wi-weighted

packing of dijoins of size τ , consisting of J i1, . . . , J
i
τ , labeled so that J ij ∩ δ+D(U) = {aj} for j ∈ [τ ].

We claim that (J1
j ∪ J2

j : j ∈ [τ ]) is a w-weighted packing of dijoins of (D,w) of size τ . To prove

this, it suffices to prove that each J1
j ∪ J2

j is a dijoin of D. Fix j ∈ [τ ] and J := J1
j ∪ J2

j . Pick a dicut

δ+D(W ) of D.

Case 1: U ∩W = ∅: In this case, δ+D(W ) is also a dicut of D2, so δ+D(W ) ∩ J2
j 6= ∅.

Case 2: U ∪W = V : In this case, δ+D(W ) is also a dicut of D1, so δ+D(W ) ∩ J1
j 6= ∅.

Case 3: W ∩U 6= ∅ and W ∪U 6= V : In this case, δ+D(U ∩W ) is a dicut of D and δ+D(U ∪W ) is a dicut

of D. By submodularity of dicuts,

|J ∩ δ+D(U)|+ |J ∩ δ+D(W )| ≥ |J ∩ δ+D(U ∩W )|+ |J ∩ δ+D(U ∪W )|

We know that J ∩ δ+D(U) = {aj}. Moreover, δ+D(U ∩W ) is also a dicut of D1 so δ+D(U ∩W )∩

J1
j 6= ∅, and δ+D(U ∪W ) is also a dicut of D2 so δ+D(U ∪W ) ∩ J2

j 6= ∅. Thus,

|J ∩ δ+D(W )| ≥ |J ∩ δ+D(U ∩W )|+ |J ∩ δ+D(U ∪W )| − |J ∩ δ+D(U)| ≥ 1 + 1− 1 = 1,

so J ∩ δ+D(W ) 6= ∅.

In all cases, we showed J ∩ δ+D(W ) 6= ∅. Since this holds for every dicut of D, it follows that J is a

dijoin, as claimed. This completes the induction step.

Base case It remains to prove the case n = 0. That is, every minimum weight dicut is trivial. If

ρ(τ,D,w) ≤ 1, then by Theorem 3.13, there exists an (equitable) w-weighted packing of dijoins of

size τ , so we are done. Otherwise, ρ(τ,D,w) = 2, so by Lemma 3.7 (1), disc(V ) = 2.

Claim 1. Let δ+(U) be a dicut of D. Then disc(U) ≤ 1. Moreover, equality holds if, and only if,

U = V − {v} for a sink v.
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Proof of Claim. By Lemma 3.7 (3), disc(U) ≤ disc(V ) − 1 = 1. Moreover, if disc(U) = 1, then

δ+(U) is a minimum weight dicut, so since n = 0, δ+(U) is a trivial dicut, implying in turn that

U = V −{v} for a sink v (note that disc({u}) = −1 for every source u). Conversely, if U = V −{v}

for a sink v, then δ+(U) is a dicut of D with disc(U) = disc(V )− disc(v) = 2− 1 = 1. ♦

Let U be the set of U ⊆ V such that disc(U) = 0 and δ+(U) is a dicut of D. Let Umin be the set

of minimal sets in U .

Claim 2. For all distinct U,W ∈ Umin, U ∪W contains all the sources of D.

Proof of Claim. Pick distinct U,W ∈ Umin. Note that δ+(U), δ+(W ) are non-trivial dicuts (since the

shore of every trivial dicut has discrepancy ±1). Since n = 0, we get that δ+(U), δ+(W ) are dicuts of

weight at least τ + 1. Thus, by Lemma 3.7 (2),

|a(U)| = w(δ+(U)) + τ · disc(U) = w(δ+(U)) ≥ τ + 1

|a(W )| = w(δ+(W )) + τ · disc(W ) = w(δ+(W )) ≥ τ + 1.

By Lemma 3.7 (1), a(V ) = τ ·disc(V ) = 2τ , so the inequalities above imply that a(U)∩a(W ) 6= ∅, so

U ∩W 6= ∅. If U ∪W = V , then we are clearly done. Otherwise, U ∪W 6= V . Thus, δ+(U ∩W ) and

δ+(U ∪W ) are dicuts of D. By Claim 1, disc(U ∩W ) ≤ 1, and since δ+(U), δ+(W ) are non-trivial

dicuts, equality does not hold. Moreover, since U,W ∈ Umin and are distinct, U ∩W is a proper subset

of U,W , and U ∩W /∈ U , so disc(U ∩W ) 6= 0. Thus, disc(U ∩W ) ≤ −1. By Claim 1, we also have

disc(U ∪W ) ≤ 1. Moreover, by modularity of discrepancy, disc(U ∩W )+disc(U ∪W ) = disc(U)+

disc(W ) = 0. Thus, disc(U ∩W ) = −1 and disc(U ∪W ) = 1, and by Claim 1, U ∪W = V − {v}

for a sink v, so the claim follows. ♦

By Lemma 3.5, we can partition A into τ rounded 1-factors. Amongst all such partitions, pick one

F1, . . . , Fτ that maximizes

p(F1, . . . , Fτ ) :=
∑

U∈Umin

|{i ∈ [τ ] : Fi has a dyad center in U}| ≤ τ |Umin|.

Claim 3. p(F1, . . . , Fτ ) = τ |Umin|.
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Proof of Claim. Suppose otherwise. After a possible relabeling, we may assume that F1 has no dyad

center in some U ∈ Umin. Consequently, the two dyad centers of F1 belong to V − U , and so by

Claim 2 belong to every U ′ ∈ Umin − {U}.

Since a(U) ≥ τ + 1, and every active vertex is a dyad center of exactly one of F1, . . . , Fτ ,

one of F2, . . . , Fτ , say F2, has both dyad centers in U . Note that dc(F2) ∩ dc(F1) = ∅. Thus, by

Lemma 3.12 (1), there exists an (F2, F1)-alternating path P . Assume that P is a (u,w)-path, where

dc(F2) = {u, v} ⊆ U and dc(F1) = {w, t} ⊆ V − U . Let F ′1 := F14P and F ′2 := F24P . Then by

Lemma 3.12 (2), F ′1 is a rounded 1-factor such that dc(F ′1) = {u, t}, and F ′2 is a rounded 1-factor such

that dc(F ′2) = {w, v}. Observe that {u, t} and {w, v} intersect U , as well as every set in Umin − {U}

because it contains {w, t}. As a result,

p(F1, F2, F3, . . . , Fτ ) < p(F ′1, F
′
2, F3, . . . , Fτ ),

thereby contradicting the maximal choice of F1, . . . , Fτ . ♦

Claim 4. Each Fi, i ∈ [τ ] is a dijoin.

Proof of Claim. By Lemma 3.8 (3), we need to show that for every dicut δ+(U),

| dc(Fi) ∩ U | ≥ 1 + disc(U).

To this end, we may assume that disc(U) ≥ 0. By Claim 1, disc(U) ≤ 1 with equality holding if, and

only if, U = V − {v} for a sink v. The inequality above clearly holds if U = V − {v} for a sink v,

so we may assume that disc(U) = 0. Thus, U ∈ U . Clearly, we may assume that U ∈ Umin, in which

case the inequality above holds by Claim 3, as required. ♦

Claim 4 finishes the proof for the base case n = 0.
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